- 二面角的平面角及求法
- 共9题
18.如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角D-AF-E与二面角C-BE-F都是.
(I)证明:平面ABEF古平面EFDC;
(II)求二面角E-BC-A的余弦值.
正确答案
(1) 证明
∵ 平面ABEF为正方形
∴ AF⊥PE
又∵ ∠AFD=90°即AF⊥FD
而FE,FD 平面FECD 且 FE∩FD=F
∴ AF⊥平面EFDC
又AF平面ABEF
∴平面ABEF ⊥平面EFDC
(II) ∵ 二面角D-AF-E的平面角为60°
∴ ∠DFE=60°
在平在面EFDC内作DO⊥EF 于点O, 则DO⊥平面ABEF.
令AF=4,则DF=2.在△ADF 中, OF=1,OD=
在平面ABEF 内作OA//AF 交AB 于M , 则OM ⊥EF
以O为原点,OM,OE,OD 分别为x,y,z轴建立如图所示空间直角坐标系,
则E(0,3,0),B(4,3,0),C(0,4, ),D(4,-1,0)
直角坐标系,则E(0,3,0),B(4,3,0),C(0,4, ),D(4,-1,0)
设平面EBC法向量为则而
∴∴
(II)
设平面BCA法向量为
则 而
∴ ∴
∴
∴ 二面角E-BC-A的余弦值为
知识点
17.(本小题满分12分)
在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.
(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(II)已知EF=FB=AC=AB=BC.求二面角的余弦值.
正确答案
知识点
19. 如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=CD,BE⊥DF.
(Ⅰ)若M为EA中点,求证:AC∥平面MDF;
(Ⅱ)求平面EAD与平面EBC所成锐二面角的大小.
正确答案
(1)略;(2)60O.
解析
⑴证明:设与交于点,连结,
在矩形中,点为中点,
因为为中点,
所以∥,
又因为平面,平面,
所以∥平面。
⑵解:因为平面平面,平面平面,平面,,
所以平面,
以为坐标原点,建立如图空间直角坐标系,
设,,,
因为,
所以,,
设平面的法向量, 由 得到的一个解为,
注意到平面的法向量,而
所以,平面与所成锐二面角的大小为 。
考查方向
本题考查了立体几何中的线面平行和二面角的问题.属于高考中的高频考点。
解题思路
1、转化为证明线线平行
2、建立空间直角坐标系,利用夹角的余弦公式求解。
易错点
1、第一问中的线面平行的转化。
2、第二问中二面角求解时要建立适当的空间直角坐标系。
知识点
18.如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,,.
(1)证明:平面平面;
(2)求正四棱锥的高,使得二面角的余弦值是.
正确答案
(1)略;
(2)1
解析
试题分析:本题属于立体几何中的基本问题,题目的难度是逐渐由易到难.
(1)证明:直三棱柱中,平面,
所以:,又,
所以:平面,平面,
所以:平面平面
(2)由(2)平面,
以 为原点,方向为轴建立空间直角坐标系,
设正四棱锥的高,,
则,,,,,,
设平面的一个法向量
则:,
取,
则,
所以:
设平面的一个法向量,
则,
取,则,,
所以:二面角的余弦值是,
所以,,
解得:
考查方向
本题考查了立体几何中的面面垂直和二面角的问题.属于高考中的高频考点。
解题思路
本题考查导数的性质,解题步骤如下:
1、转化为证明线面垂直。
2、建立空间直角坐标系,利用夹角的余弦公式求解。
易错点
1、第一问中的面面垂直的转化。
2、第二问中二面角求解时要建立适当的空间直角坐标系。
知识点
扫码查看完整答案与解析