热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

8.设函数

A奇函数,在(0,1)上是增函数

BB.奇函数,在(0,1)上是减函数

C.偶函数,在(0,1)上是增函数

D.偶函数,在(0,1)上是减函数

正确答案

A

解析

显然,f(x)的定义域为(-1,1),关于原点对称,又为奇函数,显然,f(x)在(0,1)上单调递增,故选A.

考查方向

本题主要考察函数的单调性和奇偶性等知识,意在考察考生对于函数性质的理解。.

解题思路

分求函数的定义域后发现其关于原点对称,后利用奇偶性的定义得到其为奇函数,最后利用奇函数在对称的区间上单调性相同,得到其单调性。

易错点

对于函数的性质不理解导致出错。

知识点

函数单调性的性质函数奇偶性的性质导数的几何意义
1
题型:简答题
|
简答题 · 13 分

已知,函数的从小到大的第)个极值点。

27.证明:数列{}是等比数列:

28.若对一切||恒成立,求的取值范围。

第(1)小题正确答案及相关解析

正确答案

,由,得,即

而对于,当时,

,即,则

,即,则

因此,在区间上,的符号总相反,于是当时,取得极值,所以,此时,

,易知,而

是常数,

故数列是首项为,公比为的等比数列。

解析

见答案

考查方向

本题主要考察三角函数的性质、导数的运用和恒成立问题,意在考察考生综合解决问题的能力。

解题思路

由题,令,求出函数的极值点,根据等比数列定义即可得到结果;

易错点

字母太多,导致感觉混乱没有思路;

第(2)小题正确答案及相关解析

正确答案

解析

对一切恒成立,即恒成立,也即恒成立,

,则,令

时,所以在区间上单调递减;

时,所以在区间上单调递增;

因为,且当时,,所以

因此恒成立,当且仅当,解得,

故实数a的取值范围是

考查方向

本题主要考察三角函数的性质、导数的运用和恒成立问题,意在考察考生综合解决问题的能力。

解题思路

由题问题等价于恒成立问题,设,然后运用导数的知识得到,求得,得到a的取值范围。

易错点

不会构造函数导致没有思路。

1
题型:简答题
|
简答题 · 12 分

已知函数f(x)=lnx-ax++1 (a∈R).

25.求函数f(x)的单调递增区间;

26.当a∈(,1)时,若对任意t∈[2,3],在x∈(0,t]时,函数f(x)的最小值为f(t),求实数a的取值范围.

第(1)小题正确答案及相关解析

正确答案

(1)a≤0时,单调递增区间为(1,+∞);0<时,单调递增区间为(1, );

a=时, 无单调递增区间;<a≤1时, 单调递增区间为( ,1);

a>1时,  单调递增区间为(0,1).

解析

解:(1)(x>0)…1分

时,,x∈(1,+∞)时,g(x)>0⇒>0⇒f(x)单调递增,

<0时,由x>0,得<0,所以x∈(1,+∞)时,g(x)>0⇒>0⇒f(x)单调递增,

>0时,,若,则

当0< , x∈(1,  ),>0,单调递增,

当a=  ,f(x)在(0,+∞)上无递增区间,

<a≤1时,x∈(  ,1),f′(x)>0, 单调递增,

当a>1时,x∈(0,1)时,f'(x)>0,f(x)单调递增.

综上所述,    a≤0时,单调递增区间为(1,+∞);

0<时,单调递增区间为(1, );

a=时, 无单调递增区间;

<a≤1时, 单调递增区间为( ,1);

a>1时,  单调递增区间为(0,1).

考查方向

本题主要考查了函数的单调性与含参不等式在某区间上有最小值求参数的取值范围问题,考查考生对分类讨论思想和转化化归思想的理解。

解题思路

(1)对函数进行求导,再对会影响导数符号的部分进行分类讨论;从而探索其单调性(2)由(1)对a进行分段探讨函数的单调性及在(0,t]上的最小值情况,从而确定参数的取值范围。

易错点

对参数a分类不清晰,对多个参数处理思路乱。

第(2)小题正确答案及相关解析

正确答案

(2)

解析

解:

(2)由题知函数

①当时,>0,于是时,单调递减;时,单调递增;又因为要对任意实数,当时,函数的最小值为只需要,解得

②当时,上,恒有,有且仅有上单调递减,显然成立。

③当时,于是时,单调递减;时,单调递增;要对任意实数,当时,函数的最小值为只需要

所以上单调递减,在上单调递增减,g(a)≥>ln2 +,所以此时恒定满足题意.

综上所述:

考查方向

本题主要考查了函数的单调性与含参不等式在某区间上有最小值求参数的取值范围问题,考查考生对分类讨论思想和转化化归思想的理解。

解题思路

(1)对函数进行求导,再对会影响导数符号的部分进行分类讨论;从而探索其单调性(2)由(1)对a进行分段探讨函数的单调性及在(0,t]上的最小值情况,从而确定参数的取值范围。

易错点

对参数a分类不清晰,对多个参数处理思路乱。

1
题型:简答题
|
简答题 · 14 分

已知函数,其中.

27. 讨论的单调性;

28. 设曲线轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有

29. 若关于的方程有两个正实根,求证:

第(1)小题正确答案及相关解析

正确答案

(I) 当为奇数时,上单调递减,在内单调递增;当为偶数时,上单调递增,上单调递减.

解析

(I)解:由=,可得==,其中,且.

下面分两种情况讨论:

(1)当为奇数时.

=0,解得,或.

变化时,的变化情况如下表:

-

+

-

所以,上单调递减,在内单调递增。(2)当为偶数时.

,即时,函数单调递增;

,即时,函数单调递减.

所以,上单调递增,在上单调递减.

考查方向

1.导数的运算;

解题思路

利用导数的运算、导数的几何意义解答。

易错点

不会分类讨论。

第(2)小题正确答案及相关解析

正确答案

(II)见解析;

解析

(II)证明:设点的坐标为,则.曲线在点处的切线方程为,即.令,即,则.

由于上单调递减,故上单调递减.又因为,所以当时,,当时,,所以内单调递增,在上单调递减,所以对于任意的正实数,都有,即对于任意的正实数,都有.

考查方向

导数的几何意义;

解题思路

利用导数研究函数的性质、证明不等式等基础知识和方法.

易错点

不会利用导数的几何意义来解答。

第(3)小题正确答案及相关解析

正确答案

(III)见解析.

解析

(III)证明:不妨设.由(II)知.设方程的根为,可得,当时,在上单调递减.又由(II)知,可得.

类似地,设曲线在原点处的切线方程为,可得,当,即对于任意的.

设方程的根为,可得.因为上单调递增,且,因此.

由此可得.

因为,所以,故.

所以,.

考查方向

利用导数研究函数性质、证明不等式.

解题思路

分类讨论思想、函数思想和划归思想,综合分析问题和解决问题的能力。

易错点

难度大做不出来。

1
题型:简答题
|
简答题 · 14 分

设函数,其中

26.讨论函数极值点的个数,并说明理由;

27.若>0,成立,求的取值范围。

第(1)小题正确答案及相关解析

正确答案

时,函数有一个极值点;

时,函数无极值点;

时,函数有两个极值点。

解析

(Ⅰ)由题意知 函数的定义域为

(1)当时,

此时,函数单调递增,无极值点;

(2)当时,

①当时,,

,函数单调递增,无极值点;

②当时,

设方程的两根为

因为

所以

,可得

所以 当时,,函数单调递增;

时,,函数单调递减;

时,,函数单调递增;

因此 函数有两个极值点。

(3)当时,

,可得

时,,函数单调递增;

时,,函数单调递减;

所以函数有一个极值点。

综上所述:

时,函数有一个极值点;

时,函数无极值点;

时,函数有两个极值点。

考查方向

本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力。

解题思路

(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞)..令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.

(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当时,△>0,即可得出函数的单调性与极值的情况.

(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.

易错点

分类讨论函数取得极值的情况,注意函数单调性的制约作用。

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)的取值范围是

解析

(II)由(I)知,

(1)当时,函数上单调递增,

因为

所以 时,,符合题意;

(2)当时,由,得

所以 函数上单调递增,

,所以时,,符合题意;

(3)当时,由,可得

所以时,函数单调递减;

因为

所以时,,不合题意;

(4)当时,设

因为时,

所以 上单调递增。

因此 当时,

可得

时,

此时 ,不合题意,

综上所述,的取值范围是

考查方向

本题函数恒成立问题,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.

解题思路

(II)由(I)可知:(1)当时,可得函数f(x)在(0,+∞)上单调性,即可判断出.

(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.

(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;

(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出

易错点

利用导数研究函数恒成立问题,注意转化与化归思想的应用.菁优网版权所有

1
题型:简答题
|
简答题 · 16 分

19.已知函数处的切线方程为.

(1)求的值;

(2)若对任意的,都有成立,求的取值范围;

(3)若函数的两个零点为,试判断的正负,并说明理由.

正确答案

(1)

(2)

(3)

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论(3)涉及恒成立问题,转化成求函数的最值,这种思路是一般解法,往往要利用“分离参数法”.涉及对数函数,要特别注意函数的定义域.

(1)由题意得,因函数在处的切线方程为

所以,得.

(2)由(1)知对任意都成立,

所以,即对任意都成立,从而.

又不等式整理可得,令

所以,得

时,,函数上单调递增,

同理,函数上单调递减,所以

综上所述,实数的取值范围是.

(3)结论是.

证明:由题意知函数,所以

易得函数单调递增,在上单调递减,所以只需证明即可.

因为是函数的两个零点,所以,相减得

不妨令,则,则,所以

即证,即证

因为,所以上单调递增,所以

综上所述,函数总满足成立.

考查方向

本题考查了利用导数的几何意义,利用导数求含参数的函数单调区间,分类讨论讨论点大体可以分成以下几类:

1、根据判别式讨论;

2、根据二次函数的根的大小;

3、定义域由限制时,根据定义域的隐含条件;

4、求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;

5、多次求导求解等.

解题思路

本题考查导数的性质,解题步骤如下:

1、求导,然后解导数不等式,算极值。

2、对参数分类讨论求得单调区间。

3、涉及恒成立问题,转化成求函数的最值,利用“分离参数法”

易错点

1、第二问中恒成立问题,转化为求函数的最值,最值如何求解。

2、第三问中构造函数不正确得不到正确结论。

知识点

函数零点的判断和求解导数的几何意义不等式恒成立问题
1
题型:简答题
|
简答题 · 12 分

已知函数

25.当时,求曲线在点处的切线方程;

26.在25题的条件下,求证:

27.当时,求函数上的最大值.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:

时,.所以,切线方程为

考查方向

本题考查了利用导数求切线方程、证明不等式、研究最值等知识点。

解题思路

利用导数的几何意义求切线方程;

易错点

第三问对题中所给条件不知如何下手导致失分。

第(2)小题正确答案及相关解析

正确答案

见解析

解析

试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:

由25题知,则.当时,;当时,.所以上单调递减,上单调递增.当时,函数最小值是,因此

考查方向

本题考查了利用导数求切线方程、证明不等式、研究最值等知识点。

解题思路

利用单调性进行证明;

易错点

第三问对题中所给条件不知如何下手导致失分。

第(3)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:

,令,则.当时,设,因为,所以上单调递增,且,所以恒成立,即

,当;所以上单调递减,在上单调递增.所以上的最大值等于

因为

(),所以.由(Ⅱ)知恒成立,所以上单调递增.

又因为,所以恒成立,即,因此当时,上的最大值为

考查方向

本题考查了利用导数求切线方程、证明不等式、研究最值等知识点。

解题思路

利用函数的单调性求最值.

易错点

第三问对题中所给条件不知如何下手导致失分。

1
题型:填空题
|
填空题 · 5 分

14.若存在两个正实数xy,使得等式xa(y-2ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围为         

正确答案

a<0或a

解析

xa(y-2ex)(lny-lnx)=0成立

,即

有解

数;

即当t=e时,函数g(t)取得极小值,为g(e)=(e-2e)lne=-e,即g(t)≥g(e)=-e,

有解,则

a<0或a

考查方向

本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键

解题思路

根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函

数的导数,利用函数极值和单调性的关系进行求解即可.

易错点

能成立问题要转化有解问题,同时要构造函数求最值,同时计算容易出现错误

知识点

函数性质的综合应用导数的几何意义
1
题型:简答题
|
简答题 · 12 分

已知为实数),在处的切线方程为

27.求的单调区间;

28.若任意实数,使得对任意的上恒有成立,求实数的取值范围.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

,由条件可得:

的减区间为

没有递增区间;

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

先利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。

易错点

求导数错误,参数的取值范围分类错误

第(2)小题正确答案及相关解析

正确答案

见解析

解析

由⑴可知,上的最小值为

只需对任意恒成立

时,单调递减,当时,单调递增

的最大值为只需

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

先利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。

易错点

求导数错误,参数的取值范围分类错误

1
题型:简答题
|
简答题 · 12 分

已知函数的图像在点处的切线为

27.求函数的解析式;

28.当时,求证:

29.若对任意的恒成立,求实数的取值范围;

第(1)小题正确答案及相关解析

正确答案

见解析

解析

,由已知解得,故

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

第(2)小题正确答案及相关解析

正确答案

见解析

解析

,    由

时,单调递减;当时,单调递增

,从而

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

第(3)小题正确答案及相关解析

正确答案

见解析

解析

对任意的恒成立对任意的恒成立

,∴由28题可知当时,恒成立令,得的增区间为,减区间为,∴实数的取值范围为

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

下一知识点 : 导数的运算
百度题库 > 高考 > 理科数学 > 导数的几何意义

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题