- 导数的几何意义
- 共149题
已知函数f(x)=lnx-ax+
25.求函数f(x)的单调递增区间;
26.当a∈(
正确答案
(1)a≤0时,单调递增区间为(1,+∞);0<


a=


a>1时, 单调递增区间为(0,1).
解析
解:(1)
令
当





当


当0<




当a= 
当


当a>1时,x∈(0,1)时,f'(x)>0,f(x)单调递增.
综上所述, a≤0时,单调递增区间为(1,+∞);
0<


a=


a>1时, 单调递增区间为(0,1).
考查方向
解题思路
(1)对函数进行求导,再对会影响导数符号的部分进行分类讨论;从而探索其单调性(2)由(1)对a进行分段探讨函数的单调性及在(0,t]上的最小值情况,从而确定参数的取值范围。
易错点
对参数a分类不清晰,对多个参数处理思路乱。
正确答案
(2)
解析
解:
(2)由题知函数
①当













②当






③当












所以




综上所述:
考查方向
解题思路
(1)对函数进行求导,再对会影响导数符号的部分进行分类讨论;从而探索其单调性(2)由(1)对a进行分段探讨函数的单调性及在(0,t]上的最小值情况,从而确定参数的取值范围。
易错点
对参数a分类不清晰,对多个参数处理思路乱。
已知函数
25.当


26.在25题的条件下,求证:
27.当


正确答案
见解析
解析
试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:
当





考查方向
解题思路
利用导数的几何意义求切线方程;
易错点
第三问对题中所给条件不知如何下手导致失分。
正确答案
见解析
解析
试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:
由25题知












考查方向
解题思路
利用单调性进行证明;
易错点
第三问对题中所给条件不知如何下手导致失分。
正确答案

解析
试题分析:本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:












当









因为

设






又因为







考查方向
解题思路
利用函数的单调性求最值.
易错点
第三问对题中所给条件不知如何下手导致失分。
14.若存在两个正实数x、y,使得等式x+a(y-2ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围为 .
正确答案
a<0或a≥
解析
∵x+a(y-2ex)(lny-lnx)=0成立
∴
设
即
设

即当t=e时,函数g(t)取得极小值,为g(e)=(e-2e)lne=-e,即g(t)≥g(e)=-e,
若
∴a<0或a≥
考查方向
解题思路
根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函
数的导数,利用函数极值和单调性的关系进行求解即可.
易错点
能成立问题要转化有解问题,同时要构造函数求最值,同时计算容易出现错误
知识点
已知



27.求
28.若任意实数



正确答案
见解析
解析



没有递增区间;
考查方向
解题思路
先利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。
易错点
求导数错误,参数的取值范围分类错误
正确答案
见解析
解析
由⑴可知,




令





而


考查方向
解题思路
先利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。
易错点
求导数错误,参数的取值范围分类错误
已知函数


27.求函数
28.当

29.若


正确答案
见解析
解析



考查方向
解题思路
先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.
易错点
求导错误,函数性质理解错误;分类讨论有重有漏
正确答案
见解析
解析
令

当





∴
考查方向
解题思路
先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.
易错点
求导错误,函数性质理解错误;分类讨论有重有漏
正确答案
见解析
解析




令













考查方向
解题思路
先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.
易错点
求导错误,函数性质理解错误;分类讨论有重有漏
扫码查看完整答案与解析





















