热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

设直线l1l2分别是函数f(x)= 图象上点P1P2处的切线,l1l2垂直相交于点P,且l1l2分别与y轴相交于点AB,则△PAB的面积的取值范围是

A(0,1)

B(0,2)

C(0,+∞)

D(1,+∞)

正确答案

A

知识点

导数的几何意义不等式的综合应用
1
题型:填空题
|
填空题 · 5 分

15.已知f(x)为偶函数,当时,,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。

正确答案

知识点

导数的几何意义
1
题型:简答题
|
简答题 · 14 分

已知函数

24.设.求方程的根

25. 若对于任意,不等式恒成立,求实数的最大值;

26.若,函数有且只有1个零点,求的值.

第(1)小题正确答案及相关解析

正确答案

解析

,由可得

,即,则

考查方向

指数函数、基本不等式、利用导数研究函数单调性及零点

解题思路

易错点

基本不等式的应用,分类讨论思想,函数与方程思想

第(2)小题正确答案及相关解析

正确答案

解析

由题意得恒成立,

,则由可得

此时恒成立,即恒成立

,当且仅当时等号成立,

因此实数的最大值为

考查方向

指数函数、基本不等式、利用导数研究函数单调性及零点

解题思路

易错点

基本不等式的应用,分类讨论思想,函数与方程思想

第(3)小题正确答案及相关解析

正确答案

解析

可得,令,则递增,

,因此

因此时,,则

时,,则

递减,递增,因此最小值为

① 若时,,则

logb2时,,则

因此时,,因此有零点,

时,,因此有零点,

至少有两个零点,与条件矛盾;

② 若,由函数有且只有1个零点,最小值为

可得

因此

因此,即,即

因此,则

考查方向

指数函数、基本不等式、利用导数研究函数单调性及零点

解题思路

易错点

基本不等式的应用,分类讨论思想,函数与方程思想

1
题型:简答题
|
简答题 · 14 分

已知函数

24.证明:当

25.证明:当时,存在,使得对

26.确定k的所以可能取值,使得存在,对任意的恒有

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)详见解析

解析

解法一:(1)令则有

 ,所以上单调递减;

故当时,即当时,

考查方向

导数的综合应用.

解题思路

求导,然后分类讨论求单调性

易错点

导数和函数的关系掌握不牢,不会利用导数判断函数的单调性

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)详见解析

解析

(2)令

则有

 ,所以上单调递增,

故对任意正实数均满足题意.

时,令

对任意恒有,所以上单调递增, ,即.

综上,当时,总存在,使得对任意的恒有

考查方向

导数的综合应用.

解题思路

先构造函数,然后求导判断单调区间,利用函数的单调性证明不等式。

易错点

不会构造函数,不会建立函数与导数之间的联系

第(3)小题正确答案及相关解析

正确答案

(Ⅲ)

解析

(3)当时,由(1)知,对于

则有

故当时,

,上单调递增,故,即,所以满足题意的t不存在.

时,由(2)知存在,使得对任意的任意的恒有

此时,

则有

故当时,

,上单调递增,

,即,记中较小的为

则当,故满足题意的t不存在.

,由(1)知,

,则有

时,,所以上单调递减,故,

故当时,恒有,此时,任意实数t满足题意.

综上,.

考查方向

导数的综合应用.

解题思路

分K大于1.K小于1和K等于1把不等式的左边去掉绝对值,然后再进行分类讨论,可得答案。

易错点

计算能力弱,求导分类讨论或重或漏

1
题型:简答题
|
简答题 · 12 分

设函数

25.讨论的单调性;

26.证明当时,

27.设,证明当时,.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)当时,单调递增;当时,单调递减;

解析

(I)由题设,的定义域为,令,解得

时,单调递增;当时,单调递减

考查方向

本题主要考查利用导数研究函数的单调性和不等式的证明与解法等知识,为高考题的必考题,在近几年的各省高考题出现的频率较高

解题思路

(I)首先求出导函数,然后通过解不等式可确定函数的单调性

易错点

对利用导数研究函数的单调性和不等式的证明与解法理解出现错误、计算错误

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)(II)由(I)知,处取得最大值,最大值为,所以当时,

,故当,即

解析

(II)由(I)知,处取得最大值,最大值为,所以当时,

,故当,即

考查方向

本题主要考查利用导数研究函数的单调性和不等式的证明与解法等知识,为高考题的必考题,在近几年的各省高考题出现的频率较高

解题思路

(II)左端等式可利用(I)的结论证明,右端将左端的换为即可证明;

易错点

对利用导数研究函数的单调性和不等式的证明与解法理解出现错误、计算错误

第(3)小题正确答案及相关解析

正确答案

(Ⅲ)(III)由题设,则,令

解得;当单调递增,当单调递减,由(II)知,,故,又,故当时,,所以当时,

解析

(III)由题设,则,令

解得;当单调递增,当单调递减,由(II)知,,故,又,故当时,,所以当时,

考查方向

本题主要考查利用导数研究函数的单调性和不等式的证明与解法等知识,为高考题的必考题,在近几年的各省高考题出现的频率较高

解题思路

变形所证不等式构造新函数,然后通过利用导数研究函数的单调性来处理

易错点

对利用导数研究函数的单调性和不等式的证明与解法理解出现错误、计算错误

下一知识点 : 导数的运算
百度题库 > 高考 > 理科数学 > 导数的几何意义

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题