- 等差数列的性质及应用
- 共275题
设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=__________.
正确答案
35
解析
∵{an},{bn}均是等差数列,根据等差数列的性质可得a1+a5=2a3,b1+b5=2b3,即a5=2a3-a1,b5=2b3-b1,
∴a5+b5=2(a3+b3)-(a1+b1)=2×21-7=35.
知识点
函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
正确答案
21
解析
考查函数的切线方程、数列的通项。
在点(ak,ak2)处的切线方程为:当
时,解得
,
所以。
知识点
已知等差数列满足:
,
,
的前n项和为
。
(1) 求及
;
(2) 令,求数列
的前n项和
。
正确答案
见解析。
解析
(1)设等差数列的首项为
,公差为d,
由于
所以
解得
由于
(2)因为 所以
因此
故
所以数列的前n项和
知识点
已知a是给定的实常数,
设函数是
的一个极大值点.
(1)求b的取值范围;
(2)设是
的3个极值点,问是否存在实数b,可找到
,使得
的某种排列
(其中
)依次成等差数列?若存在,示所有的b及相应的
若不存在,说明理由.
正确答案
见解析
解析
(1)解:
令
则
于是可设是
的两实根,且
1)当时,则
不是
的极值点,此时不合题意
2)当时,由于
是
的极大值点,
故 即
即
所以
所以的取值范围是(-∞,
)
(2)解:由(Ⅰ)可知,假设存了及
满足题意,则
1)当时,则
于是
即
此时
或
2)当时,则
①若
于是
即
于是
此时
②若
于是
即
于是
此时
综上所述,存在满足题意
当
当
当
知识点
已知数列的各项均为正数,记
,
,
,
(1)若,且对任意
,三个数
组成等差数列,求数列
的通项公式.
(2)证明:数列是公比为
的等比数列的充分必要条件是:对任意
,三个数
组成公比为
的等比数列.
正确答案
见解析
解析
(1)对任意,三个数
是等差数列,所以
即亦即
故数列是首项为1,公差为4的等差数列.于是
(2)①必要性:若数列是公比为q的等比数列,则对任意
,有
由
知,
均大于0,于是
即=
=
,所以三个数
组成公比为
的等比数列.
②充分性:若对于任意,三个数
组成公比为
的等比数列,
则,
于是得
即
由有
即
,从而
.
因为,所以
,故数列
是首项为
,公比为
的等比数列,
综上所述,数列是公比为
的等比数列的充分必要条件是:对任意n∈N﹡,三个数
组成公比为
的等比数列.
知识点
扫码查看完整答案与解析