- 其它方法求和
- 共28题
本小题满分12分)






(I)求
(II)求数列
正确答案
试题解析:(Ⅰ)设


所以
(Ⅱ)因为
所以数列

知识点
已知数列



17.求数列
18.设



正确答案
见解析
解析








考查方向
解题思路
第1问,根据Sn和an的关系判断出数列为等比数列,根据等比数列通项公式求通项,第2问结合第1问得到的结论,得到Bn的通项,进而证明不等式
易错点
求数列通项公式错误
正确答案
见解析
解析




设




考查方向
解题思路
第1问,根据Sn和an的关系判断出数列为等比数列,根据等比数列通项公式求通项,第2问结合第1问得到的结论,得到Bn的通项,进而证明不等式
易错点
求数列通项公式错误
已知正项数列




20. 求
21. 若



正确答案

解析
试题分析:本题属于数列知识的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:因为
所以当





所以







所以
考查方向
解题思路
直接利用

易错点
相关知识点不熟容易处错。
正确答案

解析
试题分析:本题属于数列知识的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:由已知及(Ⅰ)知,


②



考查方向
解题思路
先求出
易错点
相关知识点不熟容易处错。
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
17.求数列{an}的通项公式;
正确答案
见解析
解析
考查方向
解题思路
第1问,根据Sn和an的关系判断出数列为等差数列,根据等比数列通项公式求通项,第2问结合第1问得到的结论,得到Bn的通项,进而求出bn的前n项和。
易错点
求数列通项公式错误
正确答案
见解析
解析
考查方向
解题思路
第1问,根据Sn和an的关系判断出数列为等差数列,根据等比数列通项公式求通项,第2问结合第1问得到的结论,得到Bn的通项,进而求出bn的前n项和。
易错点
求数列通项公式错误
设(1-x)n=a0+a1x+a2x2+…+anxn,n∈N*,n≥2.
33.设n=11,求|a6|+|a7|+|a8|+|a9|+|a10|+|a11|的值;
34.设bk=

正确答案
(1)1024;
解析
解:(1)因为ak=(-1)k 
当n=11时,|a6|+|a7|+|a8|+|a9|+|a10|+|a11|=
=
考查方向
解题思路
本题考查二项式定理和性质,解题步骤如下:
(1)由二项式定理可得ak=(-1)k
=(-1)k-1 

易错点
二项式定理和性质不会熟练应用,容易计算错误
正确答案
(2)1
解析
(2)bk=


当1≤k≤n-1时,bk=(-1)k+1 





当m=0时,|

当1≤m≤n-1时,
Sm=-1+

所以|

考查方向
解题思路
本题考查二项式定理和性质,解题步骤如下:
(2)由组合数的阶乘公式可得bk= (-1)k+1 
=(-1)k-1 

易错点
二项式定理和性质不会熟练应用,容易计算错误
扫码查看完整答案与解析

















