• 直线方程和两条直线的位置关系
  • 共650题
  • 直线方程和两条直线的位置关系
  • 共650题

热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2)。

(1)求双曲线C的方程;

(2)求直线AB方程;

(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?

正确答案

见解析。

解析

(1)依题意得,解得a=1.

所以

故双曲线C的方程为.

(2)设,则有 。

两式相减得: ,

由题意得

所以,即.

故直线AB的方程为.

(3)假设A、B、C、D四点共圆,且圆心为P. 因为AB为圆P的弦,所以圆心P在AB垂直平分线CD上;又CD为圆P的弦且垂直平分AB,故圆心P为CD中点M.

下面只需证CD的中点M满足|MA|=|MB|=|MC|=|MD|即可。

得:A(-1,0),B(3,4).

由(1)得直线CD方程:

得:C(-3+,6-),D(-3-,6+),

所以CD的中点M(-3,6).

因为

所以

即 A、B、C、D四点在以点M(-3,6)为圆心,为半径的圆上.

知识点

直线的一般式方程双曲线的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”,已知函数和函数,那么函数和函数的隔离直线方程为_________。

正确答案

解析

有题可知函数与函数有公共点,由隔离直线的定义可知只有二者的公切线才能满足,,可知,可知直线方程为,故答案为

知识点

函数恒成立问题直线的两点式方程直线的一般式方程
1
题型:简答题
|
简答题 · 10 分

已知矩阵M=的一个特征值是3,求直线x﹣2y﹣3=0在M作用下的新直线方程。

正确答案

见解析。

解析

∵已知矩阵M=的一个特征值是3,∴f(λ)==(λ﹣2)(λ﹣a)﹣1=0,即 (3﹣2)(3﹣a)﹣1=0,

解得a=2,∴M=

设直线x﹣2y﹣3=0上的任意一点(x,y)在M作用下的对应点为(x′y′,),

则有  ,整理得,即,代人x﹣2y﹣3=0,整理得4x'﹣5y'﹣9=0,

故所求直线方程为:4x﹣5y﹣9=0。

知识点

直线的一般式方程
1
题型:简答题
|
简答题 · 12 分

若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为

(1)设,求的取值范围;

(2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程。

正确答案

(1)(2)

解析

解析:方程的两根在区间上的几何意义是:函数轴的两个交点的横坐标分别在区间内,由此可得不等式组

,即,则在坐标平面

内,点对应的区域如图阴影部分所示

易得图中三点的坐标分别为(4分)

(1)令,则直线经过点

取得最小值,经过点取得最大值,即

三点的值没有取到,所以(8分)

(2)过点的光线经轴反射后的光线必过点,由图可知

可能满足条件的整点为,再结合不等式知点符合条件,所以此时直线方程为:,即(12分)

知识点

二次函数的零点问题其它不等式的解法直线的一般式方程
1
题型: 单选题
|
单选题 · 5 分

8.设M是内任一点,且,设的面积分别为x,y,z,且,则在平面直角中坐标系中,以x,y为坐标的点的轨迹图形是(    )

A

B

C

D

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用直线的一般式方程
1
题型:简答题
|
简答题 · 12 分

20.已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E.

(1)求动点E的轨迹方程;

(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程.

正确答案

解:(1)由题知    

  点E的轨迹是以A,C为焦点,长轴长为4的椭圆,

E的轨迹方程为                          

(2)设,PQ的中点为

将直线联立得

,即  ①

依题意有,整理得    ②  

由①②可得

                   

设O到直线的距离为,则

时,的面积取最大值1,此时

直线方程为

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程椭圆的定义及标准方程定义法求轨迹方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

8. 已知直线交椭圆两点,椭圆与轴的正半轴交于点,的重心恰好落在椭圆的右焦点上,则直线的方程是(      )

A

B

C

D

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程椭圆的几何性质直线与椭圆的位置关系
1
题型:简答题
|
简答题 · 18 分

23.给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为

(1)求椭圆的方程和其“准圆”方程;

(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点,且分别交其“准圆”于点

①当为“准圆”与轴正半轴的交点时,求的方程;

②求证:为定值

正确答案

(1)

所以,椭圆方程:

准圆方程:

(2)①易知且直线斜率存在,

设直线为

联立

因为椭圆与直线有且只有一个交点,

所以,因此

所以的方程为

②<ⅰ>当的斜率存在时,设点

设直线

---(*)

同理,联立和椭圆方程可得:---(**)

由(*)(**)可知,是方程的两个根

因此是准圆的直径,所以

<ⅱ>当中有一条斜率不存在时,,此时

所以

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

21.如图,圆轴的正半轴交于点是圆上的动点,点在轴上的投影是,点满足

(1)求动点的轨迹的方程,并说明轨迹是什么图形;

(2)过点的直线点的轨迹交于不同的两点,若,求直线的方程

正确答案

(1)设

则由题意得轴且M是DP的中点,

所以                   

又P在圆上,所以,即

,即

轨迹是以为焦点,

长轴长为4的椭圆。     

(2)方法一:当直线的斜率不存在时,

,不满足题意。    

设直线方程为

代入椭圆方程得:

   

   (*)

知E是BF中点,

所以    (**)

由(*)、(**)

解得满足

所以

即所求直线方程为:      

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用直线的一般式方程相关点法求轨迹方程直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

6.过点作圆的两条切线,切点分别为,,则直线的方程为(   )

A

B

C

D

正确答案

B

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程直线与圆的位置关系
下一知识点 : 圆的方程
百度题库 > 高考 > 理科数学 > 直线方程和两条直线的位置关系

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题