热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 10 分

请考生在以下3题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号

【选修4-1:几何证明选讲】(请回答28、29题)

如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.

【选修4—4:坐标系与参数方程】(请回答30、31题)

在直角坐标系xy中,曲线C1的参数方程为t为参数,a>0).

在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2ρ=.

【选修4—5:不等式选讲】(请回答32、33题)

已知函数.

28.证明:直线ABO相切;

29.点C,D在⊙O上,且A,B,C,D四点共圆,证明:ABCD.

30.说明C1是哪一种曲线,并将C1的方程化为极坐标方程;

31.直线C3的极坐标方程为,其中满足tan=2,若曲线C1C2的公共点都在C3上,求a

32.在答题卡第(24)题图中画出的图像;

33.求不等式的解集.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:

的中点,连结,

因为,所以,

中,,即到直线的距离等于圆的半径,所以直线与⊙相切.

考查方向

本题考查了四点共圆、直线与圆的位置关系及证明等知识点。

解题思路

先证明,进一步可得,即O到直线AB的距离等于圆半径,所以直线与圆相切;

易错点

对相关定理不熟悉导致本题失分。

第(2)小题正确答案及相关解析

正确答案

见解析

解析

试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:

因为,所以不是四点所在圆的圆心,设四点所在圆的圆心,作直线

由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以

同理可证,.所以

考查方向

本题考查了四点共圆、直线与圆的位置关系及证明等知识点。

解题思路

(2)利用四点共圆,作直线,证明,由此可证明ABCD

易错点

对相关定理不熟悉导致本题失分。

第(3)小题正确答案及相关解析

正确答案

圆,

解析

试题分析:本题属于坐标系与参数方程的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:

均为参数)

为以为圆心,为半径的圆.方程为

即为的极坐标方程

考查方向

本题考查了参数方程、极坐标方程与直角坐标方程的互化及应用等知识点。

解题思路

直接利用互化公式即可求出极坐标方程;

易错点

不能熟记极坐标方程与参数方程的互化公式及应用导致本题出错。

第(4)小题正确答案及相关解析

正确答案

1

解析

试题分析:本题属于坐标系与参数方程的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:

,两边同乘

,即

:化为普通方程为,由题意:的公共方程所在直线即为

①—②得:,即为

,∴

考查方向

本题考查了参数方程、极坐标方程与直角坐标方程的互化及应用等知识点。

解题思路

把直线的参数方程化为普通方程,即可求解.

易错点

不能熟记极坐标方程与参数方程的互化公式及应用导致本题出错。

第(5)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于不等式的选讲内容,不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等,解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式,属于简单题,只要掌握相关不等式的知识,即可解决本题,解析如下:

如图所示:

考查方向

本题考查了分段函数的图像,绝对值不等式的解法等知识点。

解题思路

先将函数写成分段函数,然后作图;

易错点

忽略不等式的解集一定要写出集合形式导致丢分。

第(6)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于不等式的选讲内容,不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等,解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式,属于简单题,只要掌握相关不等式的知识,即可解决本题,解析如下:

,解得

,解得

,解得

综上,

,解集为

考查方向

本题考查了分段函数的图像,绝对值不等式的解法等知识点。

解题思路

用零点分区间法分类讨论,然后取并集.

易错点

忽略不等式的解集一定要写出集合形式导致丢分。

2
题型:简答题
|
简答题 · 10 分

选修4-1:几何证明选讲

如图,的直径,弦的延长线相交于点垂直的延长线于点

28.求证:

29.求证:

第(1)小题正确答案及相关解析

正确答案

详见解题过程;

解析

试题分析:本题属于平面几何的基本问题,由圆的性质直接导出角关系。∵为圆的直径,∴.又,则四点共圆,∴

考查方向

本题考查了平面几何中直线与圆的相关问题,相似、全等三角形和角平分线的性质.

解题思路

本题考查圆的性质及相似、全等,解题步骤如下:由圆的性质得到角的等量关系。

易错点

对图形的分析不到位和定理不熟练导致出错。

第(2)小题正确答案及相关解析

正确答案

详见解题过程

解析

试题分析:本题属于平面几何的基本问题,由相似关系去证所证。连接,由⑴知.又,∴,即,∴

考查方向

本题考查了平面几何中直线与圆的相关问题,相似、全等三角形和角平分线的性质.

解题思路

本题考查圆的性质及相似、全等,解题步骤如下:由相似关系去证所证。

易错点

对图形的分析不到位和定理不熟练导致出错。

3
题型:简答题
|
简答题 · 10 分

选修4—1,几何证明选讲

的两弦交于点的延长线于切圆于点.

28.求证:△∽△

29.如果,求的长.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

相似三角形、与圆有关的比例线段

解题思路

利用辅助线,做出相似三角形,根据相似求出相关线段的长

易错点

辅助线,三角形相似条件找不准

第(2)小题正确答案及相关解析

正确答案

见解析

解析

又因为为切线,则所以,.

考查方向

相似三角形、与圆有关的比例线段

解题思路

利用辅助线,做出相似三角形,根据相似求出相关线段的长

易错点

辅助线,三角形相似条件找不准

4
题型:简答题
|
简答题 · 10 分

选修4—1:几何证明选讲

如图,为⊙的直径,直线与⊙相切于垂直垂直垂直,连接.

27.

28..

第(1)小题正确答案及相关解析

正确答案

(1)略;

解析

【证明】(Ⅰ)由直线与⊙相切,得∠CEB=∠EAB.

AB为⊙O的直径,得AEEB,从而∠EAB+∠EBF

EFAB,得∠FEB+∠EBF,从而∠FEB=∠EAB. 故∠FEB=∠CEB.

考查方向

本题主要考查三角形全等、弦切角定理、直径所对的圆周角是直角、射影定理等知识,意在考查考生的逻辑推理能力和运算能力。

解题思路

先根据切割线定理求出,然后求出,后即可得到答案;

易错点

找不到角之间的等量关系导致无法证明;

第(2)小题正确答案及相关解析

正确答案

(2)略

解析

(Ⅱ)由BCCEEFAB,∠FEB=∠CEBBE是公共边,得Rt△BCE≌Rt△BFE

所以BCBF.

类似可证,Rt△ADE≌Rt△AFE,得ADAF.

又在Rt△AEB中,EFAB,故EF2AF·BF所以EF2AD·BC.

考查方向

本题主要考查三角形全等、弦切角定理、直径所对的圆周角是直角、射影定理等知识,意在考查考生的逻辑推理能力和运算能力。

解题思路

先证明,后根据勾股定理即可求得答案。

易错点

找不到中间联系的量AF·BF导致证明无法进行下去。

5
题型:简答题
|
简答题 · 10 分

如图,的直径AB的延长线与弦CD的延长线相交于点P .

27.若,求的半径;

28.若E为上的一点,,DE交AB于点F,求证:

第(1)小题正确答案及相关解析

正确答案

见解析

解析

∵PA交圆O于B,A  PC交圆O于C,D,

考查方向

相似三角形、与圆有关的计算

解题思路

利用辅助线,做出相似三角形,根据相似求出相关线段的长

易错点

辅助线,三角形相似条件找不准

第(2)小题正确答案及相关解析

正确答案

见解析

解析

连接EO  CO,∵=

考查方向

相似三角形、与圆有关的计算

解题思路

利用辅助线,做出相似三角形,根据相似求出相关线段的长

易错点

辅助线,三角形相似条件找不准

6
题型:简答题
|
简答题 · 10 分

【选修4-1:几何证明选讲】

如图,已知D为以AB为斜边的Rt△ABC的外接圆O上一点,CE⊥AB,BD交AC,CE的交点分别为F,G,且G为BF中点,

27.求证:BC=CD;

28.过点C作圆O的切线交AD延长线于点H,若AB=4,DH =1,求AD的长.

第(1)小题正确答案及相关解析

正确答案

(1)BC=CD;

解析

(1)由题意知为圆的直径,则

又∵中点,∴

,知

,则

,∴,即

考查方向

本题主要考查了圆的性质,考查考生的转化及运算能力

解题思路

(1)通过弧长相等得出线段相等;(2)通过圆的切割线定理计算AD的长。

易错点

对圆的切割线定理的灵活运用。

第(2)小题正确答案及相关解析

正确答案

(2)AD=2

解析

(2)∵四点共圆,所以

又∵的切线,∴

,∴,且

由(1)知,且,[

由切割线定理,得

,解得

考查方向

本题主要考查了圆的性质,考查考生的转化及运算能力

解题思路

(1)通过弧长相等得出线段相等;(2)通过圆的切割线定理计算AD的长。

易错点

对圆的切割线定理的灵活运用。

7
题型:填空题
|
填空题 · 5 分

14.如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=_______.

正确答案

2

解析

首先由切割线定理得,因此,又,因此,再相交弦定理有,所以.

考查方向

相交弦定理,切割线定理.

解题思路

平面几何问题主要涉及三角形全等,三角形相似,四点共圆,圆中的有关比例线段(相关定理)等知识,本题中有圆的切线,圆的割线,圆的相交弦,由圆的切割线定理和相交弦定理就可以得到题中有关线段的关系.

易错点

平面几何有关性质的综合应用

知识点

相似三角形的判定相似三角形的性质与圆有关的比例线段
8
题型:简答题
|
简答题 · 10 分

如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结BF并延长交CD于点E.

27.求证:E为CD的中点;

28.求EF·FB的值.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

解:(Ⅰ)由题可知是以为圆心,为半径作圆,而为正方形,

为圆的切线

依据切割线定理得

∵圆 为直径,∴是圆的切线,

同样依据切割线定理得

的中点.

考查方向

本题考察了圆的切割定理,和直角三角形中的射影定理

解题思路

本题解题思路

1)借助圆的切割定理得出进而证明第一问

2)借助等面积求解FC,使用射影定理得到第二问

易错点

本题易错cd是两圆的切线,

第(2)小题正确答案及相关解析

正确答案

见解析

解析

解:

(Ⅱ)连结

为圆的直径,

  由

又在中,由射影定理得

考查方向

本题考察了圆的切割定理,和直角三角形中的射影定理

解题思路

本题解题思路

1)借助圆的切割定理得出进而证明第一问

2)借助等面积求解FC,使用射影定理得到第二问

易错点

本题易错cd是两圆的切线,

9
题型:简答题
|
简答题 · 10 分

选修4-1:几何证明选讲

如图,过圆外一点作一条直线与圆交于两点,且,作直线与圆相切于点,连结于点,已知圆的半径为.

27.求的长;

28.求的值.

第(1)小题正确答案及相关解析

正确答案

3;

解析

延长交圆于点,连结,则,又,所以,又,可知,所以.根据切割线定理得,即.

考查方向

本题主要考查平面几何的知识,圆的切割线定理。

解题思路

第一问由切割线定理可得;

易错点

三角形相似容易找错,切割线定理用不熟练。

第(2)小题正确答案及相关解析

正确答案

解析

,则,从而有,又由题意知,所以,因此.

考查方向

本题主要考查平面几何的知识,圆的切割线定理。

解题思路

第二问将两条线段归到两个相似三角形中,用相似得到比例关系。

易错点

三角形相似容易找错,切割线定理用不熟练。

10
题型: 单选题
|
单选题 · 5 分

8.如图,以边为直径的半圆交于点,交于点,,则长为()

A

B

C

D

正确答案

B

解析

连接BE,由BC为直径知,设,则,在中,由射影定理得,在中,由,,所以,解得

,所以,由割线定理得,所以,故选B。

考查方向

本题主要考查直径所对的圆周角是直角、割线定理、射影定理等知识,意在考查考生的分析转化能力与推理论证能力。

解题思路

1.先根据射影定理求出,然后利用勾股定理解出;2.利用割线定理求出

易错点

1.看不出AB、BE和AE之间的关系;2.不会利用割线定理找关系求解。

知识点

相似三角形的判定相似三角形的性质与圆有关的比例线段
下一知识点 : 坐标系与参数方程
百度题库 > 高考 > 理科数学 > 几何证明选讲

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题