- 几何证明选讲
- 共247题
4-1 :几何证明选讲
如图,在锐角三角形
中,
,以
为直径的圆
与边
另外的交点分别为
,且
于
27.求证:是
的切线;
28.若,
,求
的长.
正确答案
(1)略;
解析
(Ⅰ)连结则
又
,∴
为
的中点,
而为
中点,∴
,又
,∴
,
而是半径,∴
是
的切线.
考查方向
解题思路
先证明为
的中点,后证
即可;
易错点
不会做辅助线导致没有思路;
正确答案
(2)5
解析
(Ⅱ)连,则
,则
,∴
,
设,则
,由切割线定理得:
,即
,解得:
(舍),∴
考查方向
解题思路
先证明得到
,后利用切割线定理即可求得答案。
易错点
不会利用圆的内接四边形的性质出错。
如图,是圆的平行弦,
,
交
于点
、交圆于
,过点
的切线交
的延长线于点
,
26.求的长;
27.求证:.
正确答案
(1);
解析
试题分析:本题属几何证明选讲中的切割线定理及相交弦定理,(1)直接按照步骤来求(2)要注意对参数的讨论(3)涉及恒成立问题,转化成求函数的最值,
(Ⅰ)由切割线定理知:,又PC=ED=1,得CE=2,连接BC,
,又
,
,
考查方向
解题思路
本题考几何证明选讲中的切割线定理及相交弦定理,解题步骤如下:(1)
利用切割线定理及三角形相似即可解出;(2)利用第一问及结合相交弦定理即可证明。
易错点
定理的使用不熟练。
正确答案
(2)见解析。
解析
试题分析:本题属几何证明选讲中的切割线定理及相交弦定理,(1)直接按照步骤来求(2)要注意对参数的讨论(3)涉及恒成立问题,转化成求函数的最值,
(Ⅱ)由
,得到EF=BE
考查方向
解题思路
本题考几何证明选讲中的切割线定理及相交弦定理,解题步骤如下:(1)
利用切割线定理及三角形相似即可解出;(2)利用第一问及结合相交弦定理即可证明。
易错点
定理的使用不熟练。
已知AB是圆的直径,C为圆
上一点,CD⊥AB于点D,弦BE与CD、AC 分别交于点M、N,且MN = MC
求证:MN = MB;
求证:OC⊥MN。
正确答案
详见解题过程;
解析
试题分析:本题属于平面几何的基本问题,由圆的性质直接导出角关系
连结AE,BC,∵AB是圆O的直径,∴∠AEB=90°,∠ACB=90°∵MN=MC,
∴∠MCN=∠MNC又∵∠ENA=∠MNC,∴∠ENA=∠MCN∴∠EAC=∠DCB,
∵∠EAC=∠EBC,∴∠MBC=∠MCB,∴MB=MC∴MN=MB.
考查方向
解题思路
本题考查圆的性质及相似、全等,解题步骤如下:由圆的性质得到角的等量关系。
易错点
对图形的分析不到位和定理不熟练导致出错。
正确答案
详见解题过程
解析
试题分析:本题属于平面几何的基本问题,由角度等量关系去证所证。
设OC∩BE=F,∵OB=OC,∴∠OBC=∠OCB,由(1)知,∠MBC=∠MCB,∴∠DBM=∠FCM.又∵∠DMB=∠FMC,∴∠MDB=∠MFC,即∠MFC=90°∴OC⊥MN.
考查方向
解题思路
本题考查圆的性质及相似、全等,解题步骤如下:由角度等量关系去证所证。
易错点
对图形的分析不到位和定理不熟练导致出错。
选修4-1: 几何证明选讲.
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
28.求证:;
29.若,求
的长.
正确答案
证明略
解析
∵,
∴
∽
,∴
又∵,∴
, ∴
,
∴∽
, ∴
, ∴
又∵,∴
考查方向
解题思路
先证明,再证
,可证得
易错点
找不准三角形相似或全等的条件
正确答案
PA=
解析
∵,
∴
,∵
∴
由28题可知:
,解得
.
∴. ∵
是⊙
的切线,∴
∴,解得
.得
考查方向
解题思路
先综合题中条件及28题中结论,解出EP=,BP=
,再由切割线定理,解得PA=
易错点
找不准三角形相似或全等的条件
如图,弦AB与CD相交于O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.
正确答案
解析
∠C与∠A在同一个O中,所对的弧都是,则∠C=∠A。又PE∥BC,∴∠C=∠PED。∴∠A=∠PED。又∠P=∠P,∴△PED∽△PAE,则
,∴PE2=PA·PD。又PD=2DA=2,∴PA=PD+DA=3,∴PE2=3×2=6,∴PE=
知识点
如图,已知直角三角形中,
,
,
,以
为直径作圆
交
于
,则
_______________。
正确答案
解析
为直径
所对的圆周角,则
,在
中,
,由等面积法有
,故得
。
知识点
如图3,△ABC的外角平分线AD交外接圆于D,若,则DC= ▲ .
正确答案
解析
略
知识点
选修41:几何证明选讲
如图14,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(1)BE=EC;
(2)AD·DE=2PB2.
正确答案
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
解析
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
知识点
如图,已知直线PD切⊙O于点D,直线PO交⊙O于点E,F.若,则⊙O的半径为();
() .
正确答案
,15°
解析
略
知识点
根据《城镇职工基本医疗保险定点零售药店管理暂行办法》,外配处方必须由
A.执业医师开具
B.定点零售药店执业药师开具
C.社区医护人员开具
D.定点医疗机构医师开具
E.定点零售药店药师开具
正确答案
D
解析
暂无解析
扫码查看完整答案与解析