- 几何证明选讲
- 共247题
请考生在选做题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。
24.选修4-1:几何证明选讲
如图,⊙O 中弧AB的中点为



(I)若

(II)若



25.选修4-4:坐标系与参数方程
在直角坐标系





(I)写出

(II)设点P在

26.选修4-5:不等式选讲
已知函数
(I)当a=2时,求不等式
(II)设函数



正确答案
(Ⅰ)










解析
(Ⅰ)连结

因为



又


(Ⅱ)因为









考查方向
解题思路
1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆.
易错点
圆周角定理,四点共圆相关性质问题。
正确答案
(Ⅰ)




解析
选修4-4:坐标系与参数方程
(Ⅰ)



(Ⅱ)由题意,可设点



即为



………………8分
当且仅当




考查方向
1、椭圆的参数方程;2、直线的极坐标方程.
解题思路
利用同角三角函数关系中的平方关系化曲线c1 的参数方程 普通方程式,利用公式代入C2的极坐标方程即可
易错点
参数方程与普通方程的互化,点线距中最后与三角的综合应用。
正确答案
(Ⅰ)

解析
(Ⅰ)当

解不等式

因此,

(Ⅱ)当

当
所以当


当

当


所以

考查方向
解题思路
(Ⅰ)利用等价不等式


易错点
绝对值符号的去掉讨论,含参数问题的分类讨论。
已知AB是圆

求证:MN = MB;
求证:OC⊥MN。
正确答案
详见解题过程;
解析
试题分析:本题属于平面几何的基本问题,由圆的性质直接导出角关系
连结AE,BC,∵AB是圆O的直径,∴∠AEB=90°,∠ACB=90°∵MN=MC,
∴∠MCN=∠MNC又∵∠ENA=∠MNC,∴∠ENA=∠MCN∴∠EAC=∠DCB,
∵∠EAC=∠EBC,∴∠
考查方向
解题思路

易错点
对图形的分析不到位和定理不熟练导致出错。
正确答案
详见解题过程
解析
试题分析:本题属于平面几何的基本问题,由角度等量关系去证所证。
设OC∩BE=F,∵OB=OC,∴∠OBC=∠OCB,由(1)知,∠MBC=∠MCB,∴∠DBM=∠FCM.又∵∠DMB=∠FMC,∴∠MDB=∠MFC,即∠MFC=90°∴OC⊥MN.
考查方向
解题思路

易错点
对图形的分析不到位和定理不熟练导致出错。
选修4-1: 几何证明选讲.
如图所示,已知










28.求证:
29.若

正确答案
证明略
解析
∵



又∵


∴


又∵
考查方向
解题思路
先证明

易错点
找不准三角形相似或全等的条件
正确答案
PA=
解析
∵






∴


∴

考查方向
解题思路
先综合题中条件及28题中结论,解出EP=

易错点
找不准三角形相似或全等的条件
等腰梯形











27.求证:
28.若



正确答案
略;
解析
(1) 




考查方向
解题思路
根据切割线定理得



易错点
难以找出相等的角,进而将边转化求长度.
正确答案

解析




考查方向
解题思路
根据切割线定理得



易错点
难以找出相等的角,进而将边转化求长度.
等腰梯形











27.求证:
28.若



正确答案
(1)证明略;
解析
(1) 




考查方向
解题思路
根据切割线定理得

根据同弧对的圆周角相等,可得

易错点
难以找出相等的角,进而将边转化求长度.
正确答案
解析


考查方向
解题思路
根据切割线定理得

根据同弧对的圆周角相等,可得

易错点
难以找出相等的角,进而将边转化求长度.
如图,点O为坐标原点,直线
26.若点O到直线


27.设点A是直线
正确答案
略
正确答案
略
10.如图,在





正确答案
1
解析
解析已在路上飞奔,马上就到!
知识点
22.如图,AB为圆O的直径,BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:BD平分∠CBE;
(Ⅱ)求证:
正确答案
见解析
解析
证明:
(I)由弦切角定理得到∠DBE=∠DAB,又∠DBC=∠DAC,∠DAB=∠DAC,所以∠DBE=∠DBC,即BD平分∠CBE.
(Ⅱ)由(I)可知BE=BH,所以
所以


考查方向
解题思路
利用弦切角定理找出与其相等的角,并进行相等角间转化;利用相似三角形的判定定理判定△AHC∽△AEB;利用相似三角形对应边成比例,证明有关问题.
易错点
辅助线的作法,相似条件找不准
知识点
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为 。
正确答案
解析
略
知识点
选修41:几何证明选讲
如图14,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(1)BE=EC;
(2)AD·DE=2PB2.
正确答案
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
解析
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
知识点
扫码查看完整答案与解析














































