- 直线与平面垂直的判定与性质
- 共169题
1
题型:填空题
|
6.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的( )条件。(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)
正确答案
必要不充分
解析
解析已在路上飞奔,马上就到!
知识点
充要条件的判定直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
16.在四棱锥P-ABCD中,∠ACD=90°,∠BAC=∠CAD,PA⊥平面ABCD,E为PD的中点。
(1)求证:平面PAC⊥平面PCD;
(2)求证:CE//平面PAB。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
16. 如图,四棱锥中,底面
为菱形,
,平面
底面
,
分别是
、
的中点。
(1)求证:平面
;
(2)为
上一动点,当
平面
时,求
的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
22.如图,在四棱锥中,
⊥底面
,底面
为梯形,
,
,
,点
在棱
上,且
。
(1)求证:平面⊥平面
;
(2)求平面和平面
所成锐二面角的余弦值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
直线与平面垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
18.在多面体中,
,
,
平面
,
,
为
的中点.
(I)求证:平面
;
(II)若,求二面角
的正切值的大小.
正确答案
证明:(Ⅰ)取中点
,连接
.
因为是
的中点,所以
是
的中位线,
则,所以
,
则四边形是平行四边形,所以
,故
平面
.
(Ⅱ)过点作
垂直
的延长线于点
,
因为平面
,所以
,则
平面
,
过作
,垂足为
,连接
,易证
平面
,
所以,则
是二面角
的平面角.
设,则
,
在中,
,
,所以
.
又因为,所以
,则
解析
解析已在路上飞奔,马上就到!
知识点
直线与平面平行的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
下一知识点 : 平面与平面垂直的判定与性质
扫码查看完整答案与解析