- 直线与平面垂直的判定与性质
- 共169题
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点。
(1)求证:BC⊥AM;
(2)若N是AB上一点,且,求证:
正确答案
解析
(1)因为 三棱柱ABC-A1B1C1中CC1⊥平面ABC,
所以 CC1⊥BC。 ……………………1分
因为 AC=BC=2,,
所以 由勾股定理的逆定理知BC⊥AC。 ……………………2分
又因为AC∩CC1=C,
所以 BC⊥平面ACC1A1。 ……………………3分
因为 AM平面ACC1A1,
所以 BC⊥AM。 ……………………4分
(2)过N作NP∥BB1交AB1于P,连结MP ,则
NP∥CC1,且∽
。 ……………5分
于是有。
由已知,有
。
因为 BB1=CC1。
所以 NP=CM。
所以 四边形MCNP是平行四边形。 ……………………6分
所以 CN//MP。 ……………………7分
因为 CN平面AB1M,MP
平面AB1M, ……………………8分
所以 CN //平面AB1 M, ……………………9分
(3)因为 BC⊥AC,且CC1⊥平面ABC,
所以 以C为原点,CA,CB,CC1分别为x轴,y轴,z轴建立空间直角坐标系C-xyz,…………………10分
因为 ,所以C(0,0,0),A(2,0,0),B1(0,2,4),
,
,
。 ……………………11分
设平面的法向量
,则
,
。
即
令,则
,即
。 ……………………12分
又平面MB1C的一个法向量是,
所以 。 ……………………13分
由图可知二面角A-MB1-C为锐角,
所以 二面角A-MB1-C的大小为。 ……………………14分
知识点
如图,在等腰梯形中,
为
边上一点,且
将
沿
折起,使平面
⊥平面
。
(1)求证:⊥平面
;
(2) 若为
的中点,试求异面直线
和
所成的角的余弦值。
(3) 试问:在侧棱上是否存在一点
,使截面
把几何体分成的两部分的体积之比
?若存在,请求
的长;若不存在,请说明理由.
正确答案
见解析。
解析
(1)证明:依题意知,
又∥
又∵平面⊥平面
,平面
平面
,
平面
(2)
如图,把四棱锥补成一个长方体,其中
分别为
所在棱的中点,则易得∥
,
∥
,所以
就
是异面直线和
所成的角
连结,在
中,
在中,
在中,
,
由余弦定理可得:
所以异面直线和
所成的角的余弦值为
。
(3) 解:假设在侧棱上存在一点
,满足条件
∵
∴
又由知
平面
,又
。
设到平面
的距离为
,则
又,
故
另解:
(Ⅰ)由知
平面
,如图,分别以
所在的直线为
轴、
轴、
轴,建立空间直角坐标系
,则易得各点的坐标为
故
,设
是平面的一个法向量,由
可得
由可得
,
,
又因为
是平面
的一个法向量,
所以平面⊥平面
(Ⅱ)由(Ⅰ)知的中点的坐标为
故
又
所以异面直线和
所成的角的余弦值为
。
知识点
设m,n是两条不同的直线,是两个不同的平面,给出下列条件,能得到
的是( )
正确答案
解析
略
知识点
如图,是半圆
的直径,
在
的延长线上,
与半圆
相切于点
,
,若
,
,则
______。
正确答案
解析
略
知识点
如图,直角梯形与等腰直角三角形
所在的平面互相垂直。
,
,
,
。
(1)求证:;
(2)求直线与平面
所成角的正弦值;
(3)线段上是否存在点
,使
平面
?若存在,求出
;若不存在,说明理由,
正确答案
见解析
解析
(1)证明:取中点
,连结
,
。
因为,所以
,
因为四边形为直角梯形,
,
,
所以四边形为正方形,所以
,
所以平面
,
所以,
(2)解:因为平面平面
,且
,
所以平面
,所以
,
由两两垂直,建立如图所示的空间直角坐标系
,
因为三角形为等腰直角三角形,所以
,设
,所以
,
所以 ,平面
的一个法向量为
,
设直线与平面
所成的角为
,
所以,
即直线与平面
所成角的正弦值为
,
(3)解:存在点,且
时,有
平面
,
证明如下:由,
,所以
。
设平面的法向量为
,则有
所以 取
,得
,
因为 ,且
平面
,所以
平面
,
即点满足
时,有
平面
。
知识点
扫码查看完整答案与解析