- 函数的概念及其构成要素
- 共2084题
已知函数,.
(1)讨论函数的单调区间;
(2)若函数在处取得极值,对,恒成立,求实数的取值范围.
正确答案
(1)当时,的递减区间是,无递增区间;当时,的递增区间是,递减区间是
(2)
解析
(1)在区间上, . ……………………1分
①若,则,是区间上的减函数; ……………3分
②若,令得.
在区间上, ,函数是减函数;
在区间上, ,函数是增函数;
综上所述,①当时,的递减区间是,无递增区间;
②当时,的递增区间是,递减区间是. …………6分
(2)因为函数在处取得极值,所以
解得,经检验满足题意. …………7分
由已知则 …………………8分
令,则 …………………10分
易得在上递减,在上递增, …………………12分
所以,即。 …………13分
知识点
设函数则下列结论错误的是( )
正确答案
解析
A显然正确;
∵=D(x),∴D(x)是偶函数,B正确;
∵D(x+1)==D(x),∴T=1为其一个周期,故C错误;
∵D()=0,D(2)=1,D()=0,显然函数D(x)不是单调函数,D正确
知识点
已知f是有序数对集合上的一个映射,正整数数对在映射f下的象为实数z,记作. 对于任意的正整数,映射由下表给出:
则__________,使不等式成立的x的集合是_____________.
正确答案
8;
解析
略
知识点
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点。
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值。
正确答案
见解析
解析
(1)如图,在平面ABC内,过点P作直线l∥BC,
因为l在平面A1BC外,BC在平面A1BC内,由直线与平面平行的判定定理可知,l∥平面A1BC。
由已知,AB=AC,D是BC的中点,
所以,BC⊥AD,则直线l⊥AD。
因为AA1⊥平面ABC,
所以AA1⊥直线l.
又因为AD,AA1在平面ADD1A1内,且AD与AA1相交,
所以直线l⊥平面ADD1A1.
(2)解法一:
连接A1P,过A作AE⊥A1P于E,过E作EF⊥A1M于F,连接AF.
由(1)知,MN⊥平面AEA1,
所以平面AEA1⊥平面A1MN.
所以AE⊥平面A1MN,则A1M⊥AE.
所以A1M⊥平面AEF,则A1M⊥AF.
故∠AFE为二面角A-A1M-N的平面角(设为θ)。
设AA1=1,则由AB=AC=2AA1,∠BAC=120°,有∠BAD=60°,AB=2,AD=1.
又P为AD的中点,
所以M为AB中点,且AP=,AM=1,
所以,在Rt△AA1P中,A1P=;在Rt△A1AM中,A1M=.
从而,
.
所以sin θ=.
所以cos θ=.
故二面角A-A1M-N的余弦值为.
解法二:设A1A=1.如图,过A1作A1E平行于B1C1,以A1为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz(点O与点A1重合)。
则A1(0,0,0),A(0,0,1)。
因为P为AD的中点,
所以M,N分别为AB,AC的中点。
故M,N.
所以=,=(0,0,1),=(,0,0)。
设平面AA1M的一个法向量为n1=(x1,y1,z1),
则即
故有
从而
取x1=1,则y1=,
所以n1=(1,,0)。
设平面A1MN的一个法向量为n2=(x2,y2,z2),
则即
故有
从而
取y2=2,则z2=-1,所以n2=(0,2,-1)。
设二面角A-A1M-N的平面角为θ,
又θ为锐角,
则cos θ=
=.
故二面角A-A1M-N的余弦值为.
知识点
____ __。
正确答案
3
解析
略
知识点
扫码查看完整答案与解析