热门试卷

X 查看更多试卷
1 简答题 · 13 分

已知椭圆与双曲线有公共焦点,过椭圆C的右顶点B任意作直线,设直线交抛物线于P、Q两点,且

(1)求椭圆C的方程;

(2)在椭圆C上,是否存在点R(m,n),使得直线与圆相交于不同的两点M、N,且△OMN的面积最大?若存在,求出点R的坐标及对应的△OMN的面积;若不存在,请说明理由。

1 简答题 · 14 分

已知抛物线,直线与抛物线交于不同两点,且

(1)求抛物线的焦点坐标和准线方程;

(2)设直线为线段的中垂线,请判断直线是否恒过定点?若是,请求出定点坐标;若不是,说明理由;

(3)记点轴上的射影分别为,记曲线是以为直径的圆,当直线与曲线的相离时,求的取值范围。

1 简答题 · 16 分

如图,已知平面内一动点到两个定点的距离之和为,线段的长为

(1)求动点的轨迹

(2)当时,过点作直线与轨迹交于两点,且点在线段的上方,线段的垂直平分线为

①求的面积的最大值;

②轨迹上是否存在除以外的两点关于直线对称,请说明理由。

1 简答题 · 14 分

如图,已知点是椭圆=1上的动点,以为切点的切线与直线相交于点

(1)过点与垂直的直线为,求轴交点纵坐标的取值范围;

(2)在轴上是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,说明理由。(注:参考定理:若点在椭圆上,则以为切点的椭圆的切线方程是:

1 简答题 · 13 分

已知椭圆C的中点在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆C的方程;

(2)已知点在椭圆上,点A、B是椭圆上不同的两个动点,且满足,试问直线AB的斜率是否为定值,请说明理由.

1 简答题 · 16 分

已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足

(1) 求动点所在曲线的轨迹方程;

(2)过点作斜率为的直线交曲线两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由。

1 简答题 · 13 分

以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆C的左顶点为P,左焦点为F,上顶点为Q,且满足.

(1)求椭圆C及其“准圆”的方程;

(2)若椭圆C的“准圆”的一个弦ED(不与坐标轴垂直)与椭圆C交于M、N两点,试证明:当时,试问弦ED的长是否为定值,若是,求出该定值;若不是,请说明理由.

1 简答题 · 13 分

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点。

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值。

1 简答题 · 13 分

已知椭圆:的右焦点为,且点在椭圆上。

(1)求椭圆的标准方程;

(2)已知动直线过点,且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由。

1 简答题 · 14 分

已知:椭圆),过点的直线倾斜角为,原点到该直线的距离为

(1)求椭圆的方程;

(2)斜率大于零的直线过与椭圆交于两点,若,求直线的方程;

(3)是否存在实数,直线交椭圆于两点,以为直径的圆过点?若存在,求出的值;若不存在,请说明理由。

下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题