- 圆锥曲线中的探索性问题
- 共76题
设P是圆x2+y2=4上的任意一点,过P作x轴的垂线段PD,D为垂足, M是线段PD上的点,且满足|DM|=m|PD|(0<m<1),当点P在圆上运动时,记M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过曲线C的左焦点F作斜率为

正确答案
见解析
解析
(1)如图设M(x,y)、P(x0,y0),则由|DM|=m|PD|(0<m<1)得
x= x0,|y|=m| y0|,即
∵

(2)设
由

设A(x1,y1)、B(x2,y2).
则

∴
∵
即Q点坐标为


∴存在当
知识点
已知椭圆







(1)求椭圆
(2)设椭圆






正确答案
见解析
解析
(1)当

所以:
解得:
所以椭圆方程是:
(2)当








证明如下:设点M,N点的坐标分别是


所以点



由方程组

所以:
从而:
所以:以


知识点
如图6,已知点



(1)求
(2)已知抛物线C的顶点为原点O,焦点在
正确答案
见解析。
解析
(1)
设点
于是
当且仅当A、P、B三点共线是取等号,
这时|PA|+|PB|取得最小值
(2)解法一:依题意知点
设抛物线C的方程为
由抛物线C过点B得
即抛物线C的方程为
过点M作y轴的垂线,垂足为G,则点G平分DE,
设圆心为M(m,n),
则
即当M运动时,弦DE的长不随圆心M的变化而变化,
又∵点A'到y轴的距离不变,∴三角形A'DE的面积不随圆心M的变化而变化,
解法二:依题意知点
设抛物线C的方程为
由抛物线C过点B得
即抛物线C的方程为
设圆的圆心为
∴圆的方程为
令
∵点

设
则

即当M运动时,弦DE的长不随圆心M的变化而变化,
又∵点A'到y轴的距离不变,∴三角形A'DE的面积不随圆心M的变化而变化;
解法三:依题意知点
设抛物线C的方程为
由抛物线C过点B得
即抛物线C的方程为
设圆的圆心为
∴圆的方程为
令
∵点

设
由求根公式得

∴当M运动时,弦长|DE|为定值,
又∵点A'到y轴的距离不变,∴三角形A'DE的面积不随圆心M的变化而变化,
解法四:依题意知点
设抛物线C的方程为
由抛物线C过点B得
即抛物线C的方程为
设圆的圆心为
∴圆的方程为
令
设
则
又∵点

∴当M运动时,弦长|DE|为定值,又∵点A'到y轴的距离不变,
∴三角形A'DE的面积不随圆心M的变化而变化,
知识点
已知平面内一动点



(1)求动点

(2)过点








(3)过点







正确答案
见解析
解析
(1)易知椭圆的右焦点坐标为
由抛物线的定义,知P点的轨迹是以

所以,动点P的轨迹C的方程为
(2)由题意知,直线AB的方程为
代入

设

因为点


又



即

因此

综上,实数

(3)设过点






于是

又

设存在直线

化简,得
所以,

所以
解得

所以,当


知识点
已知椭圆







(1)求椭圆
(2)设椭圆






正确答案
见解析
解析
(1)当


解得:

(2)当








证明如下:设点M,N点的坐标分别是


所以点



由方程组

所以:
从而:
所以:以


知识点
扫码查看完整答案与解析





































































