热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

设P是圆x2+y2=4上的任意一点,过P作x轴的垂线段PD,D为垂足, M是线段PD上的点,且满足|DM|=m|PD|(0<m<1),当点P在圆上运动时,记M的轨迹为曲线C.

(1)求曲线C的方程;

(2)过曲线C的左焦点F作斜率为的直线l交曲线C于A、B两点,点Q满足,是否存在实数m,使得点Q在曲线C上,若存在,求出m的值,若不存在,请说明理由。

正确答案

见解析

解析

(1)如图设M(x,y)、P(x0,y0),则由|DM|=m|PD|(0<m<1)得

x= x0,|y|=m| y0|,即

,∴即为曲线C的方程。………6′

(2)设,则

得:………8′

设A(x1,y1)、B(x2,y2).

.

,………9′

即Q点坐标为,将Q点代入,得.

∴存在当时,Q点在曲线C上。………13′

知识点

向量在几何中的应用直线与椭圆的位置关系相关点法求轨迹方程圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆 的方程;

(2)设椭圆的左顶点为A,直线与直线:分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。

正确答案

见解析

解析

(1)当时,直线的倾斜角为

所以:…………3分

解得:,……5分

所以椭圆方程是:;……6分

(2)当时,直线的方程为:,此时,M,N点的坐标分别是,又点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被轴截得的弦长为6,猜测当 变化时,以PQ为直径的圆恒过焦点,被轴截得的弦长为定值6,……………………8分

证明如下:设点M,N点的坐标分别是,则直线的方程是:

所以点的坐标是,同理,点的坐标是,…………………9分

由方程组得到:

所以:,…………………11分

从而:

所以:以为直径的圆一定过右焦点,被轴截得的弦长为定值6。……………13分

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

如图6,已知点是点A关于直线的对称点,P为轴上的动点。

(1)求的最小值;

(2)已知抛物线C的顶点为原点O,焦点在轴,且过点B,⊙M的圆心M在抛物线C上运动,且过点A',D,E为⊙M与y轴的两个交点,试探究三角形A'DE的面积是否随圆心M的变化而变化?若没有变化,求出三角形A'DE的面积。

正确答案

见解析。

解析

(1)

设点关于x轴的对称点为A1,则A1的坐标为

于是

当且仅当A、P、B三点共线是取等号,

这时|PA|+|PB|取得最小值

(2)解法一:依题意知点

设抛物线C的方程为

由抛物线C过点B得

即抛物线C的方程为

过点M作y轴的垂线,垂足为G,则点G平分DE,

设圆心为M(m,n),

即当M运动时,弦DE的长不随圆心M的变化而变化,

又∵点A'到y轴的距离不变,∴三角形A'DE的面积不随圆心M的变化而变化,

解法二:依题意知点

设抛物线C的方程为

由抛物线C过点B得

即抛物线C的方程为

设圆的圆心为 ∵圆M过点

∴圆的方程为

得,

∵点在抛物线上,

,即

即当M运动时,弦DE的长不随圆心M的变化而变化,

又∵点A'到y轴的距离不变,∴三角形A'DE的面积不随圆心M的变化而变化;

解法三:依题意知点

设抛物线C的方程为

由抛物线C过点B得

即抛物线C的方程为

设圆的圆心为  ∵圆M过点

∴圆的方程为

得:

∵点在抛物线上,

由求根公式得

     即

∴当M运动时,弦长|DE|为定值,

又∵点A'到y轴的距离不变,∴三角形A'DE的面积不随圆心M的变化而变化,

解法四:依题意知点

设抛物线C的方程为

由抛物线C过点B得

即抛物线C的方程为

设圆的圆心为  ∵圆M过点

∴圆的方程为

得,

又∵点在抛物线上,

∴当M运动时,弦长|DE|为定值,又∵点A'到y轴的距离不变,

∴三角形A'DE的面积不随圆心M的变化而变化,

知识点

抛物线的标准方程和几何性质直线与抛物线的位置关系圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 14 分

已知平面内一动点到椭圆的右焦点的距离与到直线的距离相等。

(1)求动点的轨迹的方程;

(2)过点)作倾斜角为的直线与曲线相交于两点,若点始终在以线段为直径的圆内,求实数的取值范围;

(3)过点)作直线与曲线相交于两点,问:是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,求出所有的值;若不存在,请说明理由﹒

正确答案

见解析

解析

(1)易知椭圆的右焦点坐标为

由抛物线的定义,知P点的轨迹是以为焦点,直线为准线的抛物线。

所以,动点P的轨迹C的方程为。  ……………………………………4分

(2)由题意知,直线AB的方程为

代入,得

,则

因为点始终在以线段为直径的圆内,

为钝角。

因此

综上,实数的取值范围是

(3)设过点的直线方程为,代入,得

,设,则

于是

的中点坐标为

设存在直线满足条件,则

化简,得

所以,对任意的恒成立,

所以

解得

所以,当时,存在直线与以线段为直径的圆始终相切,…………13分

知识点

直接法求轨迹方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆 的方程;

(2)设椭圆的左顶点为A,直线与直线:分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。

正确答案

见解析

解析

(1)当时,直线的倾斜角为,所以:…………3分

解得:,……5分      所以椭圆方程是:;……6分

(2)当时,直线的方程为:,此时,M,N点的坐标分别是,又点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被轴截得的弦长为6,猜测当 变化时,以PQ为直径的圆恒过焦点,被轴截得的弦长为定值6,……………………8分

证明如下:设点M,N点的坐标分别是,则直线的方程是:

所以点的坐标是,同理,点的坐标是,…………………9分

由方程组得到:

所以:,…………………11分

从而:

所以:以为直径的圆一定过右焦点,被轴截得的弦长为定值6。……………13分

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题