热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

设点P是曲线C:x2=2py(p>0)上的动点,点P到点(0,1)的距离和它到焦点F的距离之和的最小值为

(1)求曲线C的方程;

(2)若点P的横坐标为1,过P作斜率为k(k≠0)的直线交C于点Q,交x轴于点M,过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C相切?若存在,求出k的值;若不存在,请说明理由。

正确答案

见解析。

解析

(1)依题意知,解得.

所以曲线的方程为.                                         

(2)由题意直线的方程为:,则点

联立方程组,消去

.                                              

所以得直线的方程为.

代入曲线,得.

解得.                                      

所以直线的斜率.        

过点的切线的斜率.

由题意有.

解得.

故存在实数使命题成立,

知识点

抛物线的标准方程和几何性质直线与抛物线的位置关系圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若,.

(1)求点P的轨迹方程;

(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

正确答案

(1)y2=x(2)x=

解析

(1)设B(0,t),设Q(m,0),t2=|m|,m0, m=-4t2

 Q(-4t2,0),设P(x,y),则=(x-,y),=(-4t2-,0),

2=(-,2 t), +=2

(x-,y)+ (-4t2-,0)= (-,2 t),

 x=4t2,y=2 t, y2=x,此即点P的轨迹方程;       6分。

(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),M (4,0) ,则以PM为直径的圆的圆心即PM的中点T(), 以PM为直径的圆与直线x=a的相交弦长:

L=2

=2=2      10分

若a为常数,则对于任意实数y,L为定值的条件是a-=0, 即a=时,L=

存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值

知识点

相关点法求轨迹方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知椭圆抛物线的焦点均在轴上,的中心和的顶点均为原点从每条曲线上取两个点,将其坐标记录于下表中:

(1)求的标准方程;

(2)设斜率不为的动直线有且只有一个公共点且与的准线相交于点试探究:在坐标平面内是否存在定点使得以为直径的圆恒过点若存在,求出点的坐标;若不存在,请说明理由。

正确答案

见解析

解析

解析:(1)设的标准方程分别为:

代入抛物线方程中得到的解相同,…………………………2分,

在椭圆上,代入椭圆方程得的标准方程分别为             …………………………5分

(2)设直线的方程为将其代入消去并化简整理得

相切,

…………………………7分,

设切点又直线的准线的交点为直径的圆的方程为

…………………………10分,

化简并整理得恒成立,故即存在定点合题意。                …………………………12分

知识点

椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 15 分

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;

(2)探究:是否存在常数,当变化时,恒有

正确答案

见解析

解析

(1)由

解得

因为,所以

,则

化简得,……5分

,联立方程组,解得,或

因为平分,所以不合,故

(2)设,由,得

若存常数,当变化时,恒有,则由(1)知只可能

①当时,取等价于

,此式恒成立。

所以,存常数,当变化时,恒有

②当时,取,由对称性同理可知结论成立。

故,存常数,当变化时,恒有

知识点

圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知椭圆的中心为原点,离心率,其一个焦点在抛物线的准线上,若抛物线与直线相切。

(1)求该椭圆的标准方程;

(2)当点在椭圆上运动时,设动点的运动轨迹为,若点满足:,其中上的点,直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由。

正确答案

见解析

解析

(1)由

抛物线与直线相切,

抛物线的方程为:,其准线方程为:

离心率

故椭圆的标准方程为             

(2)设

当点在椭圆上运动时,

动点的运动轨迹

的轨迹方程为: 

分别为直线的斜率,由题设条件知

因此

因为点在椭圆上,所以

所以,从而可知:点是椭圆上的点,

存在两个定点,且为椭圆的两个焦点,使得为定值,其坐标为。  

知识点

向量在几何中的应用椭圆的定义及标准方程抛物线的标准方程和几何性质相关点法求轨迹方程圆锥曲线中的探索性问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题