热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 15 分

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,求出的斜率范围,若不存在,说明理由。

正确答案

见解析

解析

(1)∵

∵直线相切,

   ∴

∵椭圆C1的方程是 

(2)∵MP=MF2

∴动点M到定直线的距离等于它到定点F1(1,0)的距离,

∴动点M的轨迹是C为l1准线,F2为焦点的抛物线  

∴点M的轨迹C2的方程为    

(3)显然不与轴垂直,设 (,), (,),且,则 =

若存在C、D关于对称,则=-    ∵≠0,∴≠0

设线段的中点为,则=(+)=,=

代入方程求得:=-( -)=(-)

-=-≠1∴ ≠()= ∴线段的中点不在直线上。

所以在曲线上不存在两个不同点C、D关于对称

知识点

椭圆的定义及标准方程直接法求轨迹方程圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的 直线过点.

(1)求该椭圆的方程;

(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由。

正确答案

见解析

解析

解:(1)抛物线的焦点为,准线方程为

∴       ①         

又椭圆截抛物线的准线所得弦长为

∴  得上交点为,∴     ②

由①代入②得,解得(舍去),

从而

∴   该椭圆的方程为该椭圆的方程为

(2)∵ 倾斜角为的直线过点

∴ 直线的方程为,即

由(1)知椭圆的另一个焦点为,设关于直线对称,则得   ,

解得,即,   

满足,故点在抛物线上。所以抛物线上存在一点,使得关于直线对称。 

知识点

椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

19.已知椭圆过点,且点轴上的射影恰为椭圆的一个焦点

(Ⅰ)求椭圆的方程;

(Ⅱ)过作两条倾斜角互补的直线与椭圆分别交于两点.试问:四边形能否为平行四边形?若能,求出直线的方程;否则说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

16.已知点,直线,动点到点的距离等于它到直线的距离.

(Ⅰ)试判断点的轨迹的形状,并写出其方程.

(Ⅱ)是否存在过的直线,使得直线被截得的弦恰好被点所平分?

正确答案

(Ⅰ)因点到点的距离等于它到直线的距离,

所以点的轨迹是以为焦点、直线为准线的抛物线,其方程为.           

(Ⅱ)解法一:假设存在满足题设的直线.设直线与轨迹交于

依题意,得

①当直线的斜率不存在时,不合题意.  

②当直线的斜率存在时,设直线的方程为

联立方程组

消去,得,(*)

,解得.   

此时,方程(*)为,其判别式大于零,

∴存在满足题设的直线          

且直线的方程为:.    

解法二:假设存在满足题设的直线.设直线与轨迹交于

依题意,得.

易判断直线不可能垂直轴, 

∴设直线的方程为

联立方程组

消去,得

,

∴直线与轨迹必相交. 

,∴.    

∴存在满足题设的直线          

且直线的方程为:.   

解法三:假设存在满足题设的直线.设直线与轨迹交于

依题意,得.  

在轨迹上,

∴有,将,得

时,弦的中点不是,不合题意,  

,即直线的斜率,  

注意到点在曲线的张口内(或:经检验,直线与轨迹相交)

∴存在满足题设的直线    

且直线的方程为:.  

解析

解析已在路上飞奔,马上就到!

知识点

抛物线的定义及应用直线与抛物线的位置关系圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

20.已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为

(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率的值;

         (ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;

(2)设直线轴、轴分别交于点,问当点P在椭圆上运动时,是否为定值?请证明你的结论.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题