热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

21.(本题满分14分)本题共2个小题,第1小题满分6分,第2小题满分8分

双曲线的左、右焦点分别为,直线且与双曲线交于两点

(1) 若的倾斜角为是等边三角形,求双曲线的渐近线方程

(2) 设,若的斜率存在,且,求的斜率

正确答案

(1)由已知,

,得

,

∴渐近线方程为

(2)若,则双曲线为

,

, ,则

, ,

 (*)

∴代入(*)式,可得

直线的斜率存在,故

设直线,代入

,且

∴直线的斜率为

知识点

双曲线的几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20.设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆ACD两点,过BAC的平行线交AD于点E.

(I)证明为定值,并写出点E的轨迹方程;

(II)设点E的轨迹为曲线C1,直线lC1M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

正确答案

知识点

圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 12 分

(本小题满分12分)

已知椭圆E:的焦点在轴上,AE的左顶点,斜率为k(k>0)的直线交EA,M两点,点NE上,MANA.

(I)当t=4,时,求△AMN的面积;

(II)当时,求k的取值范围.

正确答案

(I)设,则由题意知,当时,的方程为.

由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.

代入.解得,所以.

因此的面积.

(II)由题意.

将直线的方程代入.

,故.

由题设,直线的方程为,故同理可得

,即.

时上式不成立,

因此.等价于

.由此得,或,解得.

因此的取值范围是.

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

在平面直角坐标系中,当P(xy)不是原点时,定义P的“伴随点”为

P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:

①若点A的“伴随点”是点,则点的“伴随点”是点A

②单位圆的“伴随曲线”是它自身;

③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;

④一条直线的“伴随曲线”是一条直线.

其中的真命题是_____________(写出所有真命题的序列).

正确答案

知识点

充要条件的应用圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 14 分

19.已知椭圆C:的离心率为,点在椭圆C上。

(Ⅰ)求椭圆C的方程;

(Ⅱ)设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与相交两点(两点均不在坐标轴上),且使得直线 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由。

正确答案

(Ⅰ)

(Ⅱ)

解析

试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意直线不存在斜率的特殊情况,(3)要注意计算结果去正确性

(Ⅰ)解:由题意,得

又因为点在椭圆上,

所以

解得

所以椭圆C的方程为

(Ⅱ)结论:存在符合条件的圆,且此圆的方程为

证明如下:

假设存在符合条件的圆,并设此圆的方程为

当直线的斜率存在时,设的方程为

由方程组  得

因为直线与椭圆有且仅有一个公共点,

所以,即

由方程组  得

,则

设直线 的斜率分别为

所以

代入上式,得

要使得为定值,则,即,验证符合题意.

所以当圆的方程为时,圆与的交点满足为定值

当直线的斜率不存在时,由题意知的方程为

此时,圆的交点也满足

综上,当圆的方程为时,圆与的交点满足斜率之积为定值

考查方向

本题主要考查了椭圆的标准方程、直线与椭圆的位置关系,直线与圆锥曲线的位置关系的考查主要分以下几类:

1.直线与圆锥曲线的公共点个数问题,

2.弦长问题,

3.中点弦问题.

解题思路

本题考查直线与椭圆的位置关系,解题步骤如下:

1.利用待定系数法求出椭圆的标准方程;

2.假设存在,设出圆的方程与直线方程;

3.联立直线与椭圆的方程,化简得到关于的一元二次方程,利用判别式为0求得的关系;

4.联立直线与圆的方程,化简得到关于的一元二次方程,利用平面向量的数量积求解;

5.讨论直线斜率不存在的情况,得到结论。

易错点

1、第二问中,联立直线与圆的方程得到关于关于的一元二次方程后,要注意验证判别式为正值;

2、第二问中,不要忘记“直线无斜率”的特殊情况。

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题