- 圆锥曲线中的探索性问题
- 共76题
21.(本题满分14分)本题共2个小题,第1小题满分6分,第2小题满分8分
双曲线的左、右焦点分别为
、
,直线
过
且与双曲线交于
两点
(1) 若的倾斜角为
,
是等边三角形,求双曲线的渐近线方程
(2) 设,若
的斜率存在,且
,求
的斜率
正确答案
(1)由已知,
取,得
∵,
∴
即
∴
∴渐近线方程为
(2)若,则双曲线为
∴,
设,
,则
,
,
∴
(*)
∵
∴
∴代入(*)式,可得
直线的斜率存在,故
∴
设直线为
,代入
得
∴,且
∴
∴
∴直线的斜率为
知识点
20.设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(I)证明为定值,并写出点E的轨迹方程;
(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
正确答案
知识点
(本小题满分12分)
已知椭圆E:的焦点在
轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(I)当t=4,时,求△AMN的面积;
(II)当时,求k的取值范围.
正确答案
(I)设,则由题意知
,当
时,
的方程为
,
.
由已知及椭圆的对称性知,直线的倾斜角为
.因此直线
的方程为
.
将代入
得
.解得
或
,所以
.
因此的面积
.
(II)由题意,
,
.
将直线的方程
代入
得
.
由得
,故
.
由题设,直线的方程为
,故同理可得
,
由得
,即
.
当时上式不成立,
因此.
等价于
,
即.由此得
,或
,解得
.
因此的取值范围是
.
知识点
在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点
的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
正确答案
知识点
19.已知椭圆C:的离心率为
,点
在椭圆C上。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与
相交两点
,
(两点均不在坐标轴上),且使得直线
,
的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由。
正确答案
(Ⅰ);
(Ⅱ),
.
解析
试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意直线不存在斜率的特殊情况,(3)要注意计算结果去正确性
(Ⅰ)解:由题意,得,
,
又因为点在椭圆
上,
所以,
解得,
,
,
所以椭圆C的方程为.
(Ⅱ)结论:存在符合条件的圆,且此圆的方程为.
证明如下:
假设存在符合条件的圆,并设此圆的方程为.
当直线的斜率存在时,设
的方程为
.
由方程组 得
,
因为直线与椭圆
有且仅有一个公共点,
所以,即
.
由方程组 得
,
则.
设,
,则
,
,
设直线,
的斜率分别为
,
,
所以
,
将代入上式,得
.
要使得为定值,则
,即
,验证符合题意.
所以当圆的方程为时,圆与
的交点
满足
为定值
.
当直线的斜率不存在时,由题意知
的方程为
,
此时,圆与
的交点
也满足
.
综上,当圆的方程为时,圆与
的交点
满足斜率之积
为定值
.
考查方向
本题主要考查了椭圆的标准方程、直线与椭圆的位置关系,直线与圆锥曲线的位置关系的考查主要分以下几类:
1.直线与圆锥曲线的公共点个数问题,
2.弦长问题,
3.中点弦问题.
解题思路
本题考查直线与椭圆的位置关系,解题步骤如下:
1.利用待定系数法求出椭圆的标准方程;
2.假设存在,设出圆的方程与直线方程;
3.联立直线与椭圆的方程,化简得到关于的一元二次方程,利用判别式为0求得
的关系;
4.联立直线与圆的方程,化简得到关于的一元二次方程,利用平面向量的数量积求解;
5.讨论直线斜率不存在的情况,得到结论。
易错点
1、第二问中,联立直线与圆的方程得到关于关于的一元二次方程后,要注意验证判别式为正值;
2、第二问中,不要忘记“直线无斜率”的特殊情况。
知识点
扫码查看完整答案与解析