- 圆的方程
- 共331题
在平面直角坐标系内,动圆过定点,且与定直线相切。
(1)求动圆圆心的轨迹的方程;
(2)中心在的椭圆的一个焦点为,直线过点.若坐标原点关于直线的对称点在曲线上,且直线与椭圆有公共点,求椭圆的长轴长取得最小值时的椭圆方程。
正确答案
见解析。
解析
由题可知,圆心到定点的距离与到定直线的距离相等
由抛物线定义知,的轨迹是以为焦点,直线为准线的抛物线
(确定“曲线是抛物线”1分,说明抛物线特征1分)
所以动圆圆心的轨迹的方程为.
⑵解法1、
设,则中点为, 因为两点关于直线对称,所以,即,解之得(中点1分,方程组2分,化简1分)
将其代入抛物线方程,得:,所以.
联立 ,消去,得:
由,得,
注意到,即,所以,即,
因此,椭圆长轴长的最小值为.此时椭圆的方程为.
解法2、
设 ,因为两点关于直线对称,则,
即,解之得
即,根据对称性,不妨设点在第四象限,且直线与抛物线交于.则,于是直线方程为(斜率1分,方程1分)
联立 ,消去,得:
由,得,
注意到,即,所以,即,
因此,椭圆长轴长的最小值为. 此时椭圆的方程为.
知识点
如图,圆是的外接圆,过点C的切线交的延长线于点,,。则的长______________,的长______________。
正确答案
4,
解析
略
知识点
在平面直角坐标系中, 动点到直线的距离是到点的距离的倍。
(1)求动点的轨迹方程;
(2)设直线与(1)中曲线交于点,与交于点,分别过点和作的垂线,垂足为,问:是否存在点使得的面积是面积的9倍?若存在,求出点的坐标;若不存在,说明理由。
正确答案
(1)
(2)存在点为
解析
(1)解:设点的坐标为。
由题意知 ……………………………3分
化简得
所以动点的轨迹方程为 ……………………………5分
(2)设直线的方程为,点
因为∽,所以有,由已知得,
所以有(1) ……………………………7分
由,得,
(2),(3) ……………………………10分
由(1)(2)(3)得或
所以 存在点为 ……………………………13分
知识点
正方体中,分别是棱、、的中点,动点在所确定的平面上.若动点到直线的距离等于到面的距离则点P的轨迹为……………………………………………… ( )
正确答案
解析
略
知识点
在极坐标系中,圆上的点到直线的距离的最大值是 。
正确答案
解析
略
知识点
如图,是圆外一点,为切线,为切点,割线经过圆心,,则 。
正确答案
解析
略
知识点
已知动点到点的距离与到直线的距离之和为5。
(1)求动点的轨迹的方程,并画出图形;
(2)若直线与轨迹有两个不同的公共点,求的取值范围;
(3)在(2)的条件下,求弦长的最大值。
正确答案
见解析。
解析
知识点
已知动点与一定点的距离和它到一定直线的距离之比为.
(1)求动点的轨迹的方程;
(2)已知直线交轨迹于、两点,过点、分别作直线的垂线,垂足依次为点、.连接、,试探索当变化时,直线、是否相交于一定点?若交于定点,请求出点的坐标,并给予证明;否则说明理由。
正确答案
(1)
(2)直线、相交于一定点
解析
(1)由题意得,化简并整理,得 .
所以动点的轨迹的方程为椭圆. ………3分
(2)当时,、,、
直线的方程为:,直线的方程为:,
方程联立解得,直线、相交于一点.
假设直线、相交于一定点. ………5分
证明:设,,则,,
由消去并整理得,显然,
由韦达定理得,. ………7分
因为,,
所以
………11分
所以,,所以、、三点共线, ………12分
同理可证、、三点共线,所以直线、相交于一定点.14分
知识点
如图,在圆O中,直径AB与弦CD垂直,垂足为E(E在A,O之间),EF⊥BC,垂足为F,若,则AB=6,CF•CB=5,则AE= 。
正确答案
1
解析
解:在Rt△BCE中,EC2=CF•CB=5,∴EC2=5。
∵AB⊥CD,∴CE=ED。
由相交弦定理可得AE•EB=CE•EB=CE2=5。
∴(3﹣OE)•(3+OE)=5,解得OE=2,∴AE=3﹣OE=1。
故答案为1。
知识点
经过点F (0,1)且与直线y=﹣1相切的动圆的圆心轨迹为M点A、D在轨迹M上,且关于y轴对称,过线段AD (两端点除外)上的任意一点作直线l,使直线l与轨迹M 在点D处的切线平行,设直线l与轨迹M交于点B、C。
(1)求轨迹M的方程;
(2)证明:∠BAD=∠CAD;
(3)若点D到直线AB的距离等于,且△ABC的面积为20,求直线BC的方程。
正确答案
见解析。
解析
(1)设圆心坐标为(x,y),由题意动圆经过定点F(0,1),且与定直线:y=﹣1相切,
所以 =|y+1|,
即(y﹣1)2+x2=(y+1)2,
即x2=4y,故轨迹M的方程为x2=4y。
(2)由(1)得y=x2,∴y′=x,
设D(x0,),由导数的几何意义 得直线l的斜率为kBC=,
则A(﹣x0,),设C(x1,),B(x2,)。
则kBC===x0,∴x1+x2=2x0。
kAC==,kAB=,
∴kBC+AB=+==0,∴kAB=﹣kBC。
∴∠BAD=∠CAD。
(3)点D到直线AB的距离等于,可知∠BAD=45°,
不妨设C在AD上方,即x2<x1,直线AB的方程为:y﹣=﹣(x+x0),与x2=﹣4y联立方程组,
解得B点的坐标为(x0﹣4,),∴|AB|=|x0﹣4﹣(﹣x0)|=2|x0﹣2
由(2)知,∠CAD=∠BAD=45°,同理可得|AC|=2|x0+2|。
∴△ABC的面积为×|x0+2|×2|x0﹣2|=20。
解得x0=±3。
当x0=3时,B((﹣1,),KBC=,直线BC的方程为6x﹣4y+7=0;
当x0=﹣3时,B((﹣7,),KBC=﹣,直线BC的方程为6x+4y﹣7=0;
知识点
扫码查看完整答案与解析