- 条件概率
- 共21题
一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)。
(1)求取出的4张卡片中,含有编号为3的卡片的概率;
(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望。
正确答案
(1) ; (2) EX=1×+2×+3×+4×=
解析
(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则
P(A)=.
所以,取出的4张卡片中,含有编号为3的卡片的概率为.
(2)随机变量X的所有可能取值为1,2,3,4.
P(X=1)=,
P(X=2)=,
P(X=3)=,
P(X=4)=.
所以随机变量X的分布列是
随机变量X的数学期望EX=1×+2×+3×+4×=.
知识点
从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
正确答案
解析
知识点
从1.2.3.4.5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
正确答案
解析
事件A=“取到的2个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(3,5)、(2,4),
∴p(A)=,
事件B=“取到的2个数均为偶数”所包含的基本事件有(2,4),∴P(AB)=
∴P(B|A)=。
故选B。
知识点
5位同学报名参加甲和乙两个课外小组,每位同学都要报名且限报1个,且甲小组至少有2名同学报名,乙小组至少有1名同学报名,则不同的报名方法有( )
正确答案
解析
对甲组有2人,3人,4人分类 报名总方法有:,
选A
知识点
采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为
正确答案
解析
略
知识点
扫码查看完整答案与解析