- 错位相减法求和
- 共47题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
数列{an}的前n项和为Sn=2n+1﹣2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列。
(1)求数列{an}与{bn}的通项公式;
(2)设,求数列{cn}的前n项和Tn。
正确答案
见解析。
解析
(1)当n≥2时,an=Sn﹣Sn﹣1=2n+1﹣2n=2n,
又,也满足上式,
所以数列{an}的通项公式为。
b1=a1=2,设公差为d,由b1,b3,b11成等比数列,
得(2+2d)2=2×(2+10d),化为d2﹣3d=0。
解得d=0(舍去)d=3,
所以数列{bn}的通项公式为bn=3n﹣1。
(2)由(1)可得Tn=,
∴2Tn=,
两式相减得Tn=,
==
。
知识点
已知数列的前
项和为
,且满足
。
(1)求,
的值;
(2)求;
(3)设,数列
的前
项和为
,求证:
。
正确答案
见解析。
解析
(1)当时,有
,解得
。
当时,有
,解得
。
(2)(法一)当时,有
, ………①
。 …………②
①—②得:,即:
。
。
。
另解:。
又当
时,有
,
。
(法二)根据,
,猜想:
。
用数学归纳法证明如下:
(1)当时,有
,猜想成立。
(2)假设当时,猜想也成立,即:
。
那么当时,有
,
即:,①
又 , …②
①-②得:,
解,得 。
当
时,猜想也成立。
因此,由数学归纳法证得成立,
(3),
。
知识点
已知函数满足如下条件:当
时,
,且对任意
,都有
。
(1)求函数的图象在点
处的切线方程;
(2)求当,
时,函数
的解析式;
(3)是否存在,
,使得等式
成立?若存在就求出
(
),若不存在,说明理由。
正确答案
见解析。
解析
(1)时,
,
,
所以,函数的图象在点
处的切线方程为
,即
。
(2)因为,
所以,当,
时,
,
。
(3)考虑函数,
,
,
则,
当时,
,
单调递减;
当时,
;
当时,
,
单调递增;
所以,当,
时,
,
当且仅当时,
。
所以,
而,
令,则
,
两式相减得,
。
所以,,
故。
所以,。
当且仅当时,
。
所以,存在唯一一组实数,
,
使得等式成立。
知识点
将数列{}中的所有项按每一行比上一行多两项的规则排列成如下数表
……
已知表中的第一列数…构成一个等差数列,记为数列{
},且
=4,
=10,表中每一行正中间一个数
…构成数列{
},其前n项和为
。
(1)求数列{}的通项公式;
(2)若上表中从第2行开始,每一行中的数按从左到右的顺序均成等比数列,且公比是同一个正数,已知,求
。
正确答案
见解析。
解析
知识点
已知数列的前n项和为
,且
(1)求的通项公式;
(2)设恰有4个元素,求实数
的取值范围.
正确答案
见解析
解析
知识点
已知数列的前n项和为
,且满足
,
.
(1)求数列的通项公式
;
(2)设为数列{
}的前n项和,求
;
(3)设,证明:
.
正确答案
见解析。
解析
(1)由题意,当时,有
,
两式相减得 即
.
由,得
.
所以对一切正整数n,有,
故,即
.
(2)由(1),得,
所以 ①
①两边同乘以,得
②
①-②,得,
所以,
故.
(3)由(1),得
.
知识点
已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,b2=5,,且公差d=2.
(1)求数列{an},{bn}的通项公式;
(2)是否存在正整数n,使得a1b1+ a2b2+…+ anbn>60n?若存在,求n的最小值,若不存在,说明理由。
正确答案
见解析
解析
(1)∵an+1=2Sn+1,当n≥2时,an=2Sn-1+1两式相减得:an+1=3an(n≥2)
又a2=2a1+1=3=3a1,∴an+1=3an(n∈N*).
∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1.
又b1=b2-d=5-2=3,∴bn= b1+(n-1)d=2n-1.………6′
(2)
令…………………①
则
…②
①-②得:
∴Tn=n×3n>60n,即3n>60,∵33=27,34=81,∴n的最小正整数为4.………12′
知识点
已知数列的前
项和为
,且
,对任意
N
,都有
.
(1)求数列的通项公式;
(2)若数列满足
,求数列
的前
项和
.
正确答案
见解析。
解析
(1)解法1:当时,
,
,
两式相减得,
即,得
.
当时,
,即
.
∴数列是以
为首项,公差为
的等差数列。
∴.
解法2:由,得
,
整理得,,
两边同除以得,
.
∴数列是以
为首项,公差为
的等差数列。
∴.
∴.
当时,
.
又适合上式,
∴数列的通项公式为
.
(2)解法1:∵,
∴.
∴,①
,②
①②得
.
∴.
解法2:∵,
∴.
∴.
由,
两边对取导数得,
.
令,得
.
∴ .
知识点
已知数列{}的前n项和
,数列{
}满足
,且
。
(1)求,
;
(2)设为数列{
}的前n项和,求
,并求满足
<7时n的最大值。
正确答案
见解析。
解析
知识点
扫码查看完整答案与解析