热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

已知平面内一动点到椭圆的右焦点的距离与到直线的距离相等。

(1)求动点的轨迹的方程;

(2)过点)作倾斜角为的直线与曲线相交于两点,若点始终在以线段为直径的圆内,求实数的取值范围;

(3)过点)作直线与曲线相交于两点,问:是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,求出所有的值;若不存在,请说明理由﹒

正确答案

见解析

解析

(1)易知椭圆的右焦点坐标为

由抛物线的定义,知P点的轨迹是以为焦点,直线为准线的抛物线。

所以,动点P的轨迹C的方程为。  ……………………………………4分

(2)由题意知,直线AB的方程为

代入,得

,则

因为点始终在以线段为直径的圆内,

为钝角。

因此

综上,实数的取值范围是

(3)设过点的直线方程为,代入,得

,设,则

于是

的中点坐标为

设存在直线满足条件,则

化简,得

所以,对任意的恒成立,

所以

解得

所以,当时,存在直线与以线段为直径的圆始终相切,…………13分

知识点

直接法求轨迹方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 15 分

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,求出的斜率范围,若不存在,说明理由。

正确答案

见解析

解析

(1)∵

∵直线相切,

   ∴

∵椭圆C1的方程是 

(2)∵MP=MF2

∴动点M到定直线的距离等于它到定点F1(1,0)的距离,

∴动点M的轨迹是C为l1准线,F2为焦点的抛物线  

∴点M的轨迹C2的方程为    

(3)显然不与轴垂直,设 (,), (,),且,则 =

若存在C、D关于对称,则=-    ∵≠0,∴≠0

设线段的中点为,则=(+)=,=

代入方程求得:=-( -)=(-)

-=-≠1∴ ≠()= ∴线段的中点不在直线上。

所以在曲线上不存在两个不同点C、D关于对称

知识点

椭圆的定义及标准方程直接法求轨迹方程圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 14 分

20. 如图,已知定点,点是定直线上的动点,∠的角平分线交

(1)求点的轨迹方程;

(2)若(1)中轨迹上是否存在一点,直线,使得∠是直角?如果存在,求点坐标;如果不存在,请说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直接法求轨迹方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

19.已知点F(1,0),直线:x=2,设动点P到直线的距离为d,已知|PF|=d且

(1)求动点P的轨迹方程;

(2)若=,求向量的夹角。

正确答案

(1)所求的点P轨迹方程为

(2)向量的夹角为

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算数量积表示两个向量的夹角直接法求轨迹方程
1
题型:简答题
|
简答题 · 12 分

21.点F为(1,0),M点在x轴上,P点在y轴上,且

(1)当点P在y轴上运动时,求N点的轨迹C的方程;

(2)设A(x1,y1)、B(x2,y2)、D(x3,y3)是曲线C上的三点,且|、成等差数列,当AD的垂直平分线与x轴交于E(3,0)时,求B点的坐标.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

量积判断两个平面向量的垂直关系向量在几何中的应用等差数列的性质及应用直接法求轨迹方程
下一知识点 : 用其它方法求轨迹方程
百度题库 > 高考 > 理科数学 > 直接法求轨迹方程

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题