热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 4 分

10.如图,在中,,若以为直径的圆交于点,则阴影部分的面积是__________.

正确答案

1

解析

解析已在路上飞奔,马上就到!

知识点

圆的切线的性质定理的证明
1
题型:简答题
|
简答题 · 10 分

22.如图,AB为圆O的直径,BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.

(Ⅰ)求证:BD平分∠CBE;

(Ⅱ)求证:.

正确答案

见解析

解析

证明:

(I)由弦切角定理得到∠DBE=∠DAB,又∠DBC=∠DAC,∠DAB=∠DAC,所以∠DBE=∠DBC,即BD平分∠CBE.

(Ⅱ)由(I)可知BE=BH,所以,因为∠DAB=∠DAC,∠ACB=∠ABE,所以△AHC∽△AEB,

所以,即,即.

考查方向

相似三角形、圆的相关概念与性质、角平分线的性质

解题思路

利用弦切角定理找出与其相等的角,并进行相等角间转化;利用相似三角形的判定定理判定△AHC∽△AEB;利用相似三角形对应边成比例,证明有关问题.

易错点

辅助线的作法,相似条件找不准

知识点

圆的切线的性质定理的证明与圆有关的比例线段
1
题型:简答题
|
简答题 · 10 分

22.选修4-1:几何证明选讲

如图,已知:是以为直径的半圆上一点,于点,直线与过的切线相交于点[来中点,连接于点

(Ⅰ)求证:∠BCF=∠CAB  ;

(Ⅱ)若FB=FE=1,求⊙O的半径.

正确答案

(Ⅰ)略

(Ⅱ)

解析

(Ⅰ)证明:因为AB是直径,

所以∠ACB=90°

又因为F是BD中点,所以∠BCF=∠CBF=90°-∠CBA=∠CAB

因此∠BCF=∠CAB

(Ⅱ)解:直线CF交直线AB于点G,

由FC=FB=FE得:∠FCE=∠FEC

可证得:全等,所以 FA=FG,

且AB=BG

由切割线定理得:(1+FG)2=BG×AG=2BG2      ……①

在Rt△BGF中,由勾股定理得:BG2=FG2-BF……②

由①、②得:FG2-2FG-3=0

解之得:FG1=3,FG2=-1(舍去)

所以AB=BG=

所以⊙O半径为.

考查方向

本题主要考查圆中的圆周角、圆心角定理、弦切角定理,以及切割线定理的运用,难度中等,属选考题中的热点问题。

解题思路

第一问:由已知条件得FC=FB=FE得到∠BCF=∠CBF=∠CAB

第二问:由FC=FB=FE得:∠FCE=∠FEC,继而证得:全等,得到FA=FG,由切割线定理得:(1+FG)2=BG×AG=2BG再由勾再由股定理得:BG2=FG2-BF2,,然后求出FG

易错点

1、第一问想到弦切角定理,进而向证明CF与圆相切,虽然可以证明,但是,但是过程稍烦一些。

2、第二问没有注意题中的已知条件,而运用导致无法计算

知识点

圆的切线的性质定理的证明与圆有关的比例线段
1
题型:填空题
|
填空题 · 5 分

如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为       。

正确答案

解析

知识点

圆周角定理圆的切线的性质定理的证明
1
题型:简答题
|
简答题 · 10 分

选修41:几何证明选讲

如图14,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:

(1)BE=EC;

(2)AD·DE=2PB2.

正确答案

(1)连接AB,AC.由题设知PA=PD,

故∠PAD=∠PDA.

因为∠PDA=∠DAC+∠DCA,

∠PAD=∠BAD+∠PAB,

∠DCA=∠PAB,

所以∠DAC=∠BAD,从而BE=EC.

因此BE=EC.

(2)由切割线定理得PA2=PB·PC.

因为PA=PD=DC,所以DC=2PB,BD=PB.

由相交弦定理得AD·DE=BD·DC,

所以AD·DE=2PB2.

解析

(1)连接AB,AC.由题设知PA=PD,

故∠PAD=∠PDA.

因为∠PDA=∠DAC+∠DCA,

∠PAD=∠BAD+∠PAB,

∠DCA=∠PAB,

所以∠DAC=∠BAD,从而BE=EC.

因此BE=EC.

(2)由切割线定理得PA2=PB·PC.

因为PA=PD=DC,所以DC=2PB,BD=PB.

由相交弦定理得AD·DE=BD·DC,

所以AD·DE=2PB2.

知识点

相似三角形的判定相似三角形的性质圆的切线的性质定理的证明
下一知识点 : 弦切角
百度题库 > 高考 > 理科数学 > 圆的切线的性质定理的证明

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题