- 椭圆的定义及标准方程
- 共573题
已知椭圆的离心率
,连接椭圆的四个顶点得到的菱形的面积为4。
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值
正确答案
见解析。(1)椭圆的方程为
解析
(1)解:由,得
,再由
,得
由题意可知,
解方程组 得 a=2,b=1
所以椭圆的方程为
(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),
于是A,B两点的坐标满足方程组
由方程组消去Y并整理,得
由得
设线段AB是中点为M,则M的坐标为
以下分两种情况:
(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是
(2)当K时,线段AB的垂直平分线方程为
令x=0,解得
由
整理得
综上
知识点
设椭圆,抛物线
。
(1)若经过
的两个焦点,求
的离心率;
(2)设A(0,b),,又M、N为
与
不在y轴上的两个交点,若△AMN的垂心为
,且△QMN的重心在
上,求椭圆
和抛物线
的方程。
正确答案
(1)
解析
(1)由已知椭圆焦点(c,0)在抛物线上,可得:,由
。
(2)由题设可知M、N关于y轴对称,设,由
的垂心为B,有
。
由点在抛物线上,
,解得:
故,得
重心坐标
.
由重心在抛物线上得:,
,又因为M、N在椭圆上得:
,椭圆方程为
,抛物线方程为
。
知识点
已知向量a,b满足,则
正确答案
解析
知识点
如图,点F1(﹣c,0),F2(c,0)分别是椭圆C:(a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线
于点Q。
(1)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(2)证明:直线PQ与椭圆C只有一个交点。
正确答案
见解析
解析
(1)解:将点P(﹣c,y1)(y1>0)代入得
∴P
∵点Q的坐标是(4,4),PF1⊥QF2
∴
∵
∴a=2,c=1,b=
∴椭圆C的方程为;
(2)证明:设Q,∵PF1⊥QF2
∴
∴y2=2a
∴
∵P,∴
∵,∴
∴y′=
∴当x=﹣c时,y′==
∴直线PQ与椭圆C只有一个交点。
知识点
在平面直角坐标系中,已知椭圆
:
的离心率
,且椭圆
上的点到点
的距离的最大值为
。
(1)求椭圆的方程
(2) 在椭圆上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由。
正确答案
(1) 的方程为
.
(2) 存在,面积最大为,点
的坐标为
或
或
或
.
解析
(1)依题意,所以
,
设是椭圆
上任意一点,则
,所以
,
所以
当时,
有最大值
,可得
,所以
故椭圆的方程为
.
(2)[韦达定理法]因为在椭圆
上,所以
,
,设
,
由,得
所以,可得
,
由韦达定理得,
所以
所以
设原点到直线
的距离为
,则
所以
设,由
,得
,所以,
,
所以,当时,
面积最大,且最大为
,
此时,点的坐标为
或
或
或
.
[垂径定理切入]因为点在椭圆
上运动,所以
,
,
圆心到直线
的距离
,
直线被圆
所截的弦长为
所以,接下来做法同上。
知识点
扫码查看完整答案与解析