热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

(1)求椭圆的方程;

(2)设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

正确答案

见解析。(1)椭圆的方程为

解析

(1)解:由,得,再由,得

由题意可知,

解方程组 得 a=2,b=1

所以椭圆的方程为

(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),

于是A,B两点的坐标满足方程组

由方程组消去Y并整理,得

设线段AB是中点为M,则M的坐标为

以下分两种情况:

(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是

(2)当K时,线段AB的垂直平分线方程为

令x=0,解得

整理得

综上

知识点

椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

设椭圆,抛物线

(1)若经过的两个焦点,求的离心率;

(2)设A(0,b),,又M、N为不在y轴上的两个交点,若△AMN的垂心为,且△QMN的重心在上,求椭圆和抛物线的方程。

正确答案

(1)

解析

(1)由已知椭圆焦点(c,0)在抛物线上,可得:,由

(2)由题设可知M、N关于y轴对称,设,由的垂心为B,有

由点在抛物线上,,解得:

,得重心坐标.

由重心在抛物线上得:,又因为M、N在椭圆上得:,椭圆方程为,抛物线方程为

知识点

椭圆的定义及标准方程椭圆的几何性质抛物线的标准方程和几何性质
1
题型: 单选题
|
单选题 · 5 分

已知向量a,b满足,则

A0

B

C4

D8

正确答案

B

解析

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 13 分

如图,点F1(﹣c,0),F2(c,0)分别是椭圆C:(a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线于点Q。

(1)如果点Q的坐标是(4,4),求此时椭圆C的方程;

(2)证明:直线PQ与椭圆C只有一个交点。

正确答案

见解析

解析

(1)解:将点P(﹣c,y1)(y1>0)代入

∴P

∵点Q的坐标是(4,4),PF1⊥QF2

∴a=2,c=1,b=

∴椭圆C的方程为

(2)证明:设Q,∵PF1⊥QF2

∴y2=2a

∵P,∴

,∴

∴y′=

∴当x=﹣c时,y′==

∴直线PQ与椭圆C只有一个交点。

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 14 分

在平面直角坐标系中,已知椭圆:的离心率,且椭圆上的点到点的距离的最大值为

(1)求椭圆的方程

(2) 在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由。

正确答案

(1)   的方程为.

(2) 存在,面积最大为,点的坐标为.

解析

(1)依题意,所以,

是椭圆上任意一点,则,所以,

所以

时,有最大值,可得,所以

故椭圆的方程为.

(2)[韦达定理法]因为在椭圆上,所以,,设,

,得

所以,可得

由韦达定理得,

所以

所以

设原点到直线的距离为,则

所以

,由,得,所以,

,

所以,当时,面积最大,且最大为,

此时,点的坐标为.

[垂径定理切入]因为点在椭圆上运动,所以,,

圆心到直线的距离,

直线被圆所截的弦长为

所以,接下来做法同上。

知识点

椭圆的定义及标准方程椭圆的几何性质直线与椭圆的位置关系圆锥曲线中的探索性问题
下一知识点 : 椭圆的几何性质
百度题库 > 高考 > 理科数学 > 椭圆的定义及标准方程

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题