热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

11.已知F1,F2是双曲线E:的左,右焦点,点ME上,M F1 轴垂直,sin ,则E的离心率为

A

B

C

D2

正确答案

A

知识点

抛物线的定义及应用抛物线的标准方程和几何性质
1
题型:简答题
|
简答题 · 10 分

22. 如图,在平面直角坐标系中,已知直线,抛物线
      ⑴ 若直线过抛物线的焦点,求抛物线的方程;
      ⑵ 已知抛物线上存在关于直线对称的相异两点

①求证:线段上的中点坐标为

②求的取值范围.

正确答案

知识点

抛物线的标准方程和几何性质
1
题型: 单选题
|
单选题 · 5 分

O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且

 =2,则直线OM的斜率的最大值为

A

B

C

D1

正确答案

C

知识点

直线的倾斜角与斜率抛物线的标准方程和几何性质抛物线焦点弦的性质
1
题型: 单选题
|
单选题 · 5 分

10.以抛物线C的顶点为圆心的圆交CAB两点,交C的标准线于DE两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(    )

A2

B4

C6

D8

正确答案

B

知识点

抛物线的定义及应用抛物线的标准方程和几何性质
1
题型:填空题
|
填空题 · 4 分

9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是            .

正确答案

9

解析

考查方向

抛物线标准方程和性质

解题思路

将到焦点的距离转化到准线的距离

易错点

没有转化到准线的距离

知识点

抛物线的定义及应用抛物线的标准方程和几何性质抛物线焦点弦的性质
1
题型:简答题
|
简答题 · 13 分

已知抛物线C的焦点F也是椭圆C;的一个焦点,C与C的公共弦的长为2,过点F的直线与C相交于A,B两点,与C相交于C,D两点,且同向。

24.求C的方程

25.若|AC|=||求直线的斜率。

第(1)小题正确答案及相关解析

正确答案

解析

:知其焦点F的坐标为(0,1),因为F也是椭圆的一焦点,

所以 1又的公共弦的长为2都关于y轴对称,且的方程为,由此易知的公共点的坐标为(),所以 2,联立1,2得=9,=8,故的方程为  3;

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

解题思路

根据已知条件可求得的焦点坐标为,再利用公共弦长为即可求解;

易错点

不会转化题中给出的条件的公共弦的长为2

第(2)小题正确答案及相关解析

正确答案

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

易错点

1.第(2)问联立方程运算出错;

1
题型:填空题
|
填空题 · 12 分

20.在平面直角坐标系中,已知椭圆的离心率,且椭圆上一点到点的距离的最大值为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设为抛物线上一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

正确答案

(Ⅰ)

(Ⅱ)

解析

(Ⅰ)因为,所以

则椭圆方程为

,则

时,有最大值为

解得,则

所以椭圆的方程是

(Ⅱ)设曲线上的点,因为

所以直线的方程为:.       ①

将①代入椭圆方程中整理,

则有

所以

设点到直线的距离为,则

所以的面积

时取到“=”,经检验此时,满足题意.

综上,面积的最大值为

考查方向

本题考查了直线与圆锥曲线的关系,椭圆的标准方程以及二次函数求最值。

解题思路

易错点

第一问未能利用|MQ|最大值求出b;第二问运算量较大,代数式化简容易出错。

知识点

椭圆的定义及标准方程椭圆的几何性质抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题
1
题型:填空题
|
填空题 · 4 分

13.抛物线的顶点为原点,焦点轴正半轴,过焦点且倾斜角为的直线交抛物线于点,若,则抛物线的方程为_________________.

正确答案

解析

设抛物线方程与直线的方程联立方程组

;消元可得

整理得,(1)

设直线与抛物线的两个交点的坐标分别为

由曲线与方程的定义,为上述方程(1)的两个根,

由根与系数的关系得出两根之和

由抛物线的定义得出

解得

抛物线方程为

考查方向

本题主要考查了抛物线的定义,直线与圆锥曲线的位置关系,在近几年各省的高考试题中出现的频率非常高。

解题思路

本题考查抛物线的定义,直线与圆锥曲线的位置关系,解题步骤如下:

(1)设抛物线方程;

(2)写出直线的方程

(3)联立方程组由根与系数的关系得出两根之和;

(4)由抛物线的定义得出根与弦长的关系得解。

易错点

本题必须注意充分利用曲线的定义和设而不求,忽视而单纯运算则会出现错误。

知识点

抛物线的标准方程和几何性质抛物线焦点弦的性质
1
题型:填空题
|
填空题 · 5 分

10.若抛物线的焦点在直线上,则实数____;抛物线C的准线方程为____.

正确答案

解析

由方程形式知其焦点坐标和准线方程的正确表达,把焦点坐标代入直线方程,即p=6;由此可得准线方程

考查方向

本题主要考查焦点在y轴非负半轴时抛物线的方程、焦点、准线等相关知识点,为历届高考中的重要考查对象。

解题思路

由方程形式知其焦点坐标和准线方程的正确表达,把焦点坐标代入直线方程可得p的值;由此可得准线方程。

易错点

由于抛物线的标准方程有四类,相对较多学生可能由于识记问题而导致错误。

知识点

抛物线的标准方程和几何性质
1
题型: 单选题
|
单选题 · 5 分

5.如图所示,酒杯的杯体轴截面是抛物线x2=2py (p>0)的一部分,若将半径为r(r>0)的玻璃球放入杯中,可以触及酒杯底部(即抛物线的顶点),则r的最大值为(    )

A

B1

C2

D4

正确答案

B

解析

试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难。(1)直接按照步骤来求(2)要注意对参数的讨论(3)涉及恒成立问题,转化成求二次函数的最值,这种思路是一般解法,往往要利用对称轴.

考查方向

本题主要考查了抛物线与圆的位置关系,在近几年的各省高考题出现的频率较低。

解题思路

本题考查抛物线与圆的位置关系,解题步骤如下:

(1)由题可知,已知抛物线上一点(2,2),得抛物线方程为x2=2y。

(2)设小球圆心(0,r),抛物线上点(x,y)

则点(x,y)到圆心距离平方为:r2=x2+(y-r)2=2y+(y-r)2=y2+2(1-r)y+r2

若r2最小值在(0,0)时取到,则小球触及杯底

故此二次函数的对称轴位置应在y轴的左侧,所以1-r≥0,所以r≤1,

所以0<r≤1,

故答案为:0<r≤1.

易错点

本题易在判断线是否在面上发生错误。

知识点

抛物线的标准方程和几何性质
1
题型:填空题
|
填空题 · 5 分

10.已知双曲线 的一条渐近线过点 ,且双曲线的一个焦点在抛物线 的准线上,则双曲线的方程为___________

正确答案

解析

代入渐近线方程,得a=2b. c=,c2=a2+b2, a2+.

考查方向

本题主要考查了双曲线的方程及双曲线与抛物线的基本知识。

解题思路

本题考查运用双曲线的渐近线方程及抛物线的准线方程,求a,b,解题步骤如下:将代入渐近线方程,得a=2b. 由双曲线的一个焦点在抛物线 的准线上,可知c=,c2=a2+b2, a2+.

易错点

本题必须注意审题,忽视则会出现错误。

知识点

双曲线的定义及标准方程双曲线的几何性质抛物线的标准方程和几何性质
1
题型:简答题
|
简答题 · 10 分

24.若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(2,2).

(1)求抛物线C的方程;

(2)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为

变化且满足时,证明直线AB恒过定点,并求出该定点坐标.

正确答案

见解析

解析

(1)

(2)

定点(6,-4)

考查方向

本题主要考查了抛物线与直线方程的综合能力运用。

解题思路

1利用已知条件把求出抛物线方程2.设出直线方程证明其过定点。

易错点

本题必须注意审题,否则求解错误。

知识点

抛物线的标准方程和几何性质圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

如图(7),已知抛物线C:=2py (p>0)的焦点为F,过点F的直线l交抛物线C于A,B两点.

23.当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5),求p的值;

24.以AB为直径的圆交x轴于M,N两点,记劣弧的长度为S,当直线l绕点F旋转时,求的最大值.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

解:(1)  当的倾斜角为时,的方程为

    

  得中点为

中垂线为     代入得  

考查方向

本题主要考查了抛物线的方程与性质及直线与抛物线的综合应用,近几年高考考查的频率较高,也常考查直线与椭圆、圆与直线,求曲线轨迹或最值问题。

解题思路

(1)首先设出直线AB方程,再计算出中点从而确定其中垂线方程,最后将Q点坐标代入方程算出P的值(2)根据题意设出直线L的方程,表示出弦AB和圆心D的坐标;令,探索到,转化为求的最大值问题。

易错点

对条件的合理转化是本题的突破口也是易错点。

第(2)小题正确答案及相关解析

正确答案

(2)的最大值为

解析

解:

(2)设的方程为,代入

      中点为

  

轴的距离

取最小值

的最大值为

的最大值为.

考查方向

本题主要考查了抛物线的方程与性质及直线与抛物线的综合应用,近几年高考考查的频率较高,也常考查直线与椭圆、圆与直线,求曲线轨迹或最值问题。

解题思路

(1)首先设出直线AB方程,再计算出中点从而确定其中垂线方程,最后将Q点坐标代入方程算出P的值(2)根据题意设出直线L的方程,表示出弦AB和圆心D的坐标;令,探索到,转化为求的最大值问题。

易错点

对条件的合理转化是本题的突破口也是易错点。

1
题型:简答题
|
简答题 · 13 分

已知抛物线C的焦点F也是椭圆C;的一个焦点,C与C的公共弦的长为2,过点F的直线与C相交于A,B两点,与C相交于C,D两点,且同向。

24.求C的方程

25.若|AC|=||求直线的斜率。

第(1)小题正确答案及相关解析

正确答案

解析

:知其焦点F的坐标为(0,1),因为F也是椭圆的一焦点,

所以 1又的公共弦的长为2都关于y轴对称,且的方程为,由此易知的公共点的坐标为(),所以 2,联立1,2得=9,=8,故的方程为  3;

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

解题思路

根据已知条件可求得的焦点坐标为,再利用公共弦长为即可求解;

易错点

不会转化题中给出的条件的公共弦的长为2

第(2)小题正确答案及相关解析

正确答案

考查方向

本题主要考察椭圆的标准方程及其性质和直线与椭圆位置关系,意在考察考生的综合解决问题的能力。

易错点

1.第(2)问联立方程运算出错;

1
题型:填空题
|
填空题 · 5 分

6.在平面直角坐标系中,已知抛物线的顶点在坐标原点,焦点在轴上,若曲线经过点,则其焦点到准线的距离为________.

正确答案

解析

设所求抛物线方程为y2=2px,

依题意9=2p

∴p=

又因为其焦点到准线的距离为p

故答案为:

考查方向

本题主要考查了抛物线的定义,在近几年的各省高考题出现的频率较高,常与抛物线的方程等知识点交汇命题,体现了学生的基础知识掌握能力。

解题思路

理解题意,代入点P求出抛物线的方程,有方程去解决性质问题。

易错点

1、抛物线的方程和图像记忆出错 。

2、不能准确理解焦点到准线的距离,从而不知如何求解。

知识点

抛物线的标准方程和几何性质
下一知识点 : 计数原理
百度题库 > 高考 > 理科数学 > 圆锥曲线与方程

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题