热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

如图放置的边长为的正沿边长为的正方形的各边内侧逆时针方向滚动,当沿正方形各边滚动一周后,回到初始位置时,点的轨迹长度是(    )。

A

B

C

D

正确答案

B

解析

知识点

定义法求轨迹方程
1
题型:简答题
|
简答题 · 16 分

如图,已知平面内一动点到两个定点的距离之和为,线段的长为

(1)求动点的轨迹

(2)当时,过点作直线与轨迹交于两点,且点在线段的上方,线段的垂直平分线为

①求的面积的最大值;

②轨迹上是否存在除以外的两点关于直线对称,请说明理由。

正确答案

见解析

解析

(1)当时,轨迹是以为焦点的椭圆

时,轨迹是线段

时,轨迹不存在

(2)以线段的中点为坐标原点,以所在直线为轴建立平面直角坐标系,

可得轨迹的方程为

①解法1:设表示点到线段的距离

要使的面积有最大值,只要有最大值

当点与椭圆的上顶点重合时,

的最大值为

解法2:在椭圆中,设,记

在椭圆上,由椭圆的定义得:

中,由余弦定理得:

配方,得:

从而

根据椭圆的对称性,当最大时,最大

当点与椭圆的上顶点重合时,

最大值为

②结论:当时,显然存在除外的两点关于直线对称

下证当不垂直时,不存在除外的两点关于直线对称

证法1:假设存在这样的两个不同的点

设线段的中点为   直线

由于上,故        ①

在椭圆上,所以有

两式相减,得

将该式写为

并将直线的斜率和线段的中点,表示代入该表达式中,

     ②

①、②得,由(1)代入

的中点为点,而这是不可能的.

此时不存在满足题设条件的点.

证法2:假设存在这样的两个不同的点

,故直线经过原点。

直线的斜率为,则假设不成立,

故此时椭圆上不存在两点(除了点、点外)关于直线对称

知识点

定义法求轨迹方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

如图,正方体中,为底面上的动点,,且,则点的轨迹是()

A线段

B圆弧

C椭圆的一部分

D抛物线的一部分

正确答案

A

解析

知识点

棱柱的结构特征定义法求轨迹方程
1
题型:简答题
|
简答题 · 14 分

已知函数,其中

(1)若,求曲线在点处的切线方程;

(2)求在区间上的最大值和最小值。

正确答案

见解析

解析

(1)解:的定义域为, 且 。             ………………2分

时,

所以曲线在点处的切线方程为

。                                              ………………4分

(2)解:方程的判别式为

(ⅰ)当时,,所以在区间上单调递增,所以在区间

上的最小值是;最大值是。                    ………………6分

(ⅱ)当时,令,得 ,或

的情况如下:

的单调增区间为;单调减区间为

………………8分

① 当时,,此时在区间上单调递增,所以在区间

上的最小值是;最大值是。                    ………………10分

② 当时,,此时在区间上单调递减,在区间上单调递增,

所以在区间上的最小值是 。        ………………11分

因为

所以 当时,在区间上的最大值是;当时,在区间上的最大值是。                          ………………12分

③ 当时,,此时在区间上单调递减,

所以在区间上的最小值是;最大值是。………………14分

综上,

时,在区间上的最小值是,最大值是

时,在区间上的最小值是,最大值是

时,在区间上的最小值是,最大值是

时,在区间上的最小值是,最大值是

知识点

定义法求轨迹方程
1
题型:简答题
|
简答题 · 13 分

已知圆,圆,动圆外切并且与圆内切,圆心的轨迹为曲线 C.

(1)求C的方程;

(2)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

正确答案

见解析

解析

由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.

设动圆的圆心为(,),半径为R.

(1)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,

由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.

(2)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,

当且仅当圆P的圆心为(2,0)时,R=2.

∴当圆P的半径最长时,其方程为,

的倾斜角为时,则轴重合,可得|AB|=.

的倾斜角不为时,由≠R知不平行轴,设轴的交点为Q,则=,可求得Q(-4,0),∴设,由于圆M相切得,解得.

=时,将代入并整理得,解得=,∴|AB|==.

=-时,由图形的对称性可知|AB|=,

综上,|AB|=或|AB|=.

知识点

定义法求轨迹方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知动圆与直线相切,并与定圆相内切.

(1)求动圆圆心P的轨迹C的方程.

(2)过原点作斜率为1的直线交曲线C于为第一象限点),又过作斜率为的直线交曲线C于,再过作斜率为的直线交曲线C于……如此继续,一般地,过作斜率为的直线交曲线C于,设.

①令,求证:数列是等比数列;

②数列的前n项和为,试比较大小.

正确答案

见解析

解析

知识点

等比数列的判断与证明数列与不等式的综合定义法求轨迹方程
1
题型:填空题
|
填空题 · 5 分

如图,已知⊙的弦交半径于点,若,则的长为______。

正确答案

2

解析

延长交⊙O于点,由相交弦定理知

知识点

定义法求轨迹方程
1
题型:填空题
|
填空题 · 5 分

曲线处的切线方程是(),在处的切线与直线轴围成三角形的面积为()。

正确答案

解析

函数过点,又因为,所以切线斜率,由点斜式可知切线方程为;其中阴影区域为所围成的三角形,可知三点坐标分别为,故

知识点

定义法求轨迹方程
1
题型:简答题
|
简答题 · 13 分

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点。

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值。

正确答案

见解析。

解析

(1)设圆心的坐标为,半径为

由于动圆与圆相切,且与圆相内切,所以动

与圆只能内切

 ………………………………………2分

圆心的轨迹为以为焦点的椭圆,其中

故圆心的轨迹 …………………………………………………………4分

(2)设,直线,则直线

可得:

 ……………………………6分

可得:

………………………………8分

的比值为一个常数,这个常数为……………………………………9分

(3)的面积的面积,

到直线的距离

 …………………………11分

,则

(当且仅当,即,亦即时取等号)

时,取最大值……………………………………………………13分

知识点

定义法求轨迹方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

曲线是平面内到定点和定直线的距离之和等于的点的轨迹,给出下列三个结论:

① 曲线关于轴对称;

② 若点在曲线上,则

③ 若点在曲线上,则

其中,所有正确结论的序号是____________。

正确答案

①②③

解析

知识点

命题的真假判断与应用抛物线的标准方程和几何性质定义法求轨迹方程
1
题型: 单选题
|
单选题 · 5 分

为曲线上的点,且曲线在点处切线倾斜角的取值范围为,则点横坐标的取值范围为 (    )

A

B

C

D

正确答案

A

解析

设点P的横坐标为x0

∵y=x2+2x+3,

∴y'=2x0+2,

利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),

又∵,∴0≤2x0+2≤1,

故选A。

知识点

定义法求轨迹方程
1
题型:填空题
|
填空题 · 5 分

设M、N分别是曲线上的动点,则M、N的最小距离是  

正确答案

解析

知识点

定义法求轨迹方程
1
题型:填空题
|
填空题 · 4 分

已知点在曲线为参数)上,则到曲线的焦点的距离为_______________。

正确答案

5

解析

知识点

定义法求轨迹方程
1
题型:填空题
|
填空题 · 5 分

曲线是平面内到定点的距离与到定直线的距离之和为3的动点的轨迹. 则曲线轴交点的坐标是();又已知点为常数),那么的最小值=() .

正确答案

解析

知识点

抛物线的定义及应用抛物线的标准方程和几何性质定义法求轨迹方程
1
题型:填空题
|
填空题 · 5 分

在极坐标系中,设曲线

的交点分别为,则线段的垂直平分线的

极坐标方程为                。

正确答案

解析

知识点

定义法求轨迹方程
下一知识点 : 计数原理
百度题库 > 高考 > 理科数学 > 圆锥曲线与方程

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题