- 裂项相消法求和
- 共41题
已知公差不为0的等差数列的前项和为,,且成等比数列.
(1)求数列的通项公式;
(2)求数列的前项和公式.
正确答案
(1)
(2)
解析
(1)设等差数列的公差为.
因为,
所以. ① ……………………………………3分
因为成等比数列,
所以. ② ……………………………………5分
由①,②可得:. ……………………………………6分
所以. ……………………………………7分
(2)由可知:.
……………………………………9分
所以. ……………………………………11分
所以
.
所以数列的前项和为. …………………………13分
知识点
已知数列的前项和为,且 ,
(1)求数列的通项公式
(2)数列的通项公式,求数列的前项和为
正确答案
(1)
(2)=
解析
(1)时, …… 1分
时, …… 2分
经检验时成立,…… 3分
综上 …… 4分
(2)由(1)可知 …… 6分
= …… 9分
=
= ……12分 (具体最终化简形式酌情处理)
知识点
已知数列中,,其前项和为,
(1)求数列的通项公式;
(2)令,求数列的前项和为。
正确答案
(1)(2)
解析
解析: (1)因为 ,所以数列的公差d=2 …………2分
又 所以 ………………5分
(2) 易得= ………………6分
所以 ……………8分
所以 ………………10分
知识点
19. 已知数列的前项和是,且.
(1)求数列的通项公式;
(2)设,求适合方程 的正整数的值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.将杨晖三角形中的每一个数都换成分数 ,就得到一个如右图所示的分数三角形,称为莱布尼兹三角形。令
,
观察莱布尼兹三角形规律,计算极限=( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析