热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

如图,在底面为直角梯形的四棱锥中,平面

(1)求证:

(2)求直线与平面所成的角;

(3)设点在棱上,,若∥平面,求的值.

正确答案

见解析

解析

(1)在直角梯形ABCD中,

所以,所以.                  …………2分

又因为,所以   由,所以

所以                                         …………4分

(2)如图,在平面ABCD内过D作直线DF//AB,交BC于F,分别以DA、DF、DP所在的直线为x、y、z轴建立空间直角坐标系.

由条件知A(1,0,0),B(1,,0),

,则,     …………5分

由(1)知.

.

                           …………7分

 即直线. …………8分

(3)由(2)知C(-3,,0),记P(0,0,a),则

,所以

=

…………10分

为平面PAB的法向量,则,即,即.

 进而                                    …………12分

,得

                         …………14分

知识点

平面的概念、画法及表示
1
题型:简答题
|
简答题 · 14 分

如图6,已知四边形是矩形,,三角形是正三角形,且平面平面

(1)若的中点,证明:

(2)求二面角的余弦值。

正确答案

见解析。

解析

知识点

平面的概念、画法及表示
1
题型:简答题
|
简答题 · 12 分

如图所示,在棱长为2的正方体中,,分别为线段,

中点。

(1)求异面直线所成的角;

(2)求三棱锥的体积。

正确答案

(1)(2)

解析

(1)连,由分别为线段的中点,

可得,故即为异面直线所成的角。   …………………2分

在正方体中,∵平面

平面,∴

中,

,∴

所以异面直线EF与BC所成的角为,……… 6分

(2)在正方体中,由平面平面

可知,∵中点,

,又相交,∴平面,  …………………………9分

所以三棱锥的体积为

知识点

平面的概念、画法及表示
1
题型:简答题
|
简答题 · 14 分

已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F分别是AB、PD的中点。

(1)求证:AF∥平面PEC;

(2)求二面角P﹣EC﹣D的余弦值;

(3)求点B到平面PEC的距离。

正确答案

见解析。

解析

(1)证明:因为PA⊥平面ABCD,底面ABCD是矩形,所以以A为原点,如图建立直角坐标系。

则A(0,0,0),B(2,0,0),C(2,1,0),D(0,1,0),E(1,0,0),F(),P(0,0,1)。

取PC的中点M,连结ME,则M(),

,即AF∥EM,又EM⊂平面PEC,AF⊄平面PEC,所以AF∥平面PEC;

(2)设平面PEC的法向量为

,可得,令z=﹣1,得y=1,x=﹣1。

取平面ABCD的一个法向量为

=

所以二面角P﹣EC﹣D的余弦值等于

(3),平面PEC的法向量

所以点B到平面PEC的距离d=

知识点

平面的概念、画法及表示
1
题型: 单选题
|
单选题 · 4 分

在四边形ABCD中,,且·=0,则四边形ABCD是            (   )

A菱形

B矩形

C直角梯形

D等腰梯形

正确答案

A

解析

知识点

平面的概念、画法及表示
下一知识点 : 平面的基本性质及推论
百度题库 > 高考 > 理科数学 > 平面的概念、画法及表示

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题