- 圆锥曲线中的范围、最值问题
- 共78题
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为。
(1)求圆C的极坐标方程;
(2)是圆
上一动点,点
满足
,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程。
正确答案
(1)(2)
解析
(1)设是圆
上任一点,过
作
于
点,则在
△
中,
,而
,
,
,所以
,即
为所求的圆
的极坐标方程. ( 5分)
(2)设,由于
,所以
代入⑴中方程得
,即
,
∴,
,
∴点的轨迹的直角坐标方程为
. (10分)
知识点
已知抛物线的焦点为
,抛物线上一点
的横坐标为
,过点
作抛物线
的切线
交
轴于点
,交
轴于点
,交直线
于点
,当
时,
。
(1)求证:为等腰三角形,并求抛物线
的方程;
(2)若位于
轴左侧的抛物线
上,过点
作抛物线
的切线
交直线
于点
,交直线
于点
,求
面积的最小值,并求取到最小值时的
值。
正确答案
见解析
解析
解析:(1)设,则切线
的方程为
,
所以,
,
,所以
,
所以为等腰三角形,且
为
中点,所以
,
,
,得
,抛物线方程为
……………… 4分
(2)设,则
处的切线方程为
由,
同理,……………………………………………………6分
所以面积……① ……8分
设的方程为
,则
由,得
代入①得:
,使面积最小,则
得到…………② 令
,
②得,
,
所以当时
单调递减;当
单调递增,
所以当时,
取到最小值为
,此时
,
,
所以,即
。……………………………………………………12分
知识点
已知抛物线的极坐标方程为
,若斜率为
的直线经过抛物线
的焦点,与圆
相切,则
。
正确答案
解析
将化为普通方程即
,得
知识点
已知直线:
与双曲线:
有交点,则实数
的取值范围是
正确答案
解析
略
知识点
已知为椭圆
的左右焦点,点
为其上一点,且有
(1)求椭圆的标准方程;
(2)过的直线
与椭圆
交于
两点,过
与
平行的直线
与椭圆
交于
两点,求四边形
的面积
的最大值。
正确答案
(1)(2)6
解析
解析:(1)设椭圆的标准方程为
由已知得
,
……………………2分
又点在椭圆上,
椭圆的标准方程为
……………………4分
(2)由题意可知,四边形为平行四边形
=4
设直线的方程为
,且
由得
……………………6分
=
+
=
=
==
…………………………8分
令,则
=
=
,……… 10分
又在
上单调递增
的最大值为
所以的最大值为6. ………………………………12分
知识点
扫码查看完整答案与解析