- 离散型随机变量及其分布列、均值与方差
- 共221题
16.设矩形的长为,宽为
,其比满足
∶
=
,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为
,且不同种产品是否受欢迎相互独立,记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(1)求该公司至少有一种产品受欢迎的概率;
(2)求的值;
(3)求数学期望。
某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率。
如图3,A,B两点之间有6条网线连接,每条网线能通过的最大信息量分别为1,1,2,2,3,4,从中任取三条网线且使每条网线通过最大信息量,设这三条网线通过的最大信息量之和为。
(1)当≥6时,则保证线路信息畅通,求线路信息畅通的概率;
(2)求的分布列和数学期望。
某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,设取出的3箱中,第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。
(1)在取出的3箱中,若该用户从第三箱中有放回的抽取3次(每次一件),求恰有两次抽到二等品的概率;
(2)在取出的3箱中,若该用户再从每箱中任意抽取2件产品进行检验,用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及数学期望。
某班有甲、乙两个学习小组,两组的人数如下:
现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取名同学进行学业检测。
(1)求从甲组抽取的同学中恰有名女同学的概率;
(2)记为抽取的
名同学中男同学的人数,求随机变量
的分布列和数学期望。
扫码查看完整答案与解析