- 概率与统计
- 共1631题
19.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,
表示购买2台机器的同时购买的易损零件数.
(I)求的分布列;
(II)若要求,确定
的最小值;
(III)以购买易损零件所需费用的期望值为决策依据,在与
之中选其一,应选用哪个?
正确答案
(I)x的取值为16,17,18,19,20,21,22
x的分布列:
知识点
17.某班同学参加社会实践活动,对本市25~55岁年龄段的人群进行某项随
机调查,得到各年龄段被调查人数的频率分布直方图如右(部分有缺损):
(1)补全频率分布直方图(需写出计算过程);
(2)现从[40,55)岁年龄段样本中采用分层抽样方法抽取6人分成A、B两个小组(每组3人)参加户外体验活动,记A组中年龄在[40,45)岁的人数为,
求随机变量的分布列和数学期望E
.
正确答案
(1)0.06;
(2).
解析
试题分析:本题属于概率统计中的基本问题,题目的难度是逐渐由易到难.
(1)因为第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3
所以高为0.3/5=0.06。频率直方图如下:
(2) 因为[40,45)组、[45,50)组和[50,55)组的人数比为0.03:0.02:0.01=3:2:1,
所以三组中应抽出的人数分别为3、2、1.
=0,1,2,3.
,
,
,
.
.
考查方向
本题考查了概率统计中的频率分布直方图和离散型随机变量的分布列和数学期望的问题.属于高考中的高频考点。
解题思路
本题考查概率统计,解题步骤如下:
(1)利用直方图的性质求小矩形的高,并补充直方图。
(2)写出随机变量的取值,并求出相应的概率和数学期望。
易错点
(1)第一问中的高为频率/组距。
(2)第二问中随机变量的取值及对应的概率。
知识点
19.(1)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣 小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道
题进行解答.选题情况如下表(单位•人)
(1)能否据此判断有97.5% 的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5 — 7分钟,乙每次解答一道几何题所用的时间在6 - 8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率,
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、 乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
正确答案
(1)有97.5%的把握认为视觉和空间能力与性别有关;
(2);
(3)
解析
(1)由表中数据得K2的观测值,所以根据统计有97.5%的把握认为视觉和空间能力与性别有关;
(2)设甲、乙解答一道几何题的时间分别为x、y分钟,则基本事件满足的区域为(如图所示)
设事件A为“乙比甲先做完此道题”则满足的区域为x>y,
∴由几何概型即乙比甲先解答完的概率为
;
(3)由题可知在选择做几何题的8名女生中任意抽取两人,抽取方法有种,其中甲、乙两人没有一个人被抽到有
种;恰有一人被抽到有
种;两人都被抽到有
种,∴X可能取值为0,1,2,
,
,
X的分布列为:
∴.
考查方向
本题考查了独立性检验的应用;离散型随机变量的期望与方差.
解题思路
(1)根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到结论;
(2)利用面积比,求出乙比甲先解答完的概率;
(3)确定X的可能值有0,1,2.依次求出相应的概率求分布列,再求期望即可.
易错点
1、第一问中独立性检验知识不熟,公式不会应用;
2、第二问中几何概型转化成面积比
知识点
19.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(Ⅰ)求在未来4年中,至多1年的年入流量超过120的概率;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;
若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
正确答案
(Ⅰ)
(Ⅱ)2
解析
(I)依题意,
,
.
由二项分布,在未来4年中至多有1年入流量超过120的概率为:
.
(Ⅱ)记水电站年总利润为(单位:万元),
由于水库年入流量总大于40,所以至少安装1台.
①安装1台发电机的情形:
由于水库年入流量总大于40,所以一台发电机运行的概率为1,
对应的年利润,
.
②安装2台发电机的情形:
当时,一台发电机运行,此时
,
因此.
当时,两台发电机运行,此时
,
因此.
所以的分布列如下:
所以.
③安装3台发电机的情形:
当时,一台发电机运行,此时
,
因此.
当时,两台发电机运行,此时
,
此时.
当时,三台发电机运行,此时
,
因此.
所以的分布列如下:
所以.
综上,欲使水电站年总利润的均值达到最大,应安装2台发电机.
考查方向
解题思路
(Ⅰ)先求出年入流量X的概率,根据二项分布,求出未来4年中,至少有1年的年入流量超过120的概率;
(Ⅱ)分三种情况进行讨论,分别求出一台,两台,三台的数学期望,比较即可得到.
易错点
第一问较简单,明确二项分布原理就不易出错,第二问分类出错
知识点
(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则 Eξ1﹣Eξ2= (元).
正确答案
0.2
知识点
19.生产甲乙两种元件,其质量按检测指标划分为:
指标大于或者等于为正品,小于
为次品,现随机抽取这两种元件各
件进行检测,检测结果统计如下:
(1)试分别估计元件甲,乙为正品的概率;
(2)生产一件元件甲,若是正品可盈利元,若是次品则亏损
元;生产一件元件乙,若是正品可盈利
元,若是次品则亏损
元.
在(1)的前提下:
①记为生产1件甲和1件乙所得的总利润,求随机变量
的分布列和数学期望;
②求生产件元件乙所获得的利润不少于
元的概率
正确答案
(1);
(2)66.
解析
试题分析:本题属于概率统计中的基本问题,题目的难度是逐渐由易到难.
解:(1)元件甲为正品的概率约为:元
元件乙为正品的概率约为:
(2)①随机变量的所有取值为
,
,
,
,
而且;
;
;
所以随机变量的分布列为:
所以:
②设生产的件元件乙中正品有
件,则次品有
件,
依题意,,
解得:,
所以或
,
设“生产件元件乙所获得的利润不少于
元”为事件
,
则:
考查方向
本题考查了概率统计中的离散型随机变量的分布列和数学期望的问题.属于高考中的高频考点
解题思路
本题考查概率统计,解题步骤如下:
1、利用已知求出甲、乙为正品的概率。
2、写出随机变量的取值,并求出相应的概率和数学期望
易错点
随机变量的取值及对应的概率。
知识点
17. 某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为,第二道工序检查合格的概率为
,已知该厂三个生产小组分别每月负责生产一台这种仪器
(I)求本月恰有两台仪器完全合格的概率;
(II)若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为,求
的分布列和每月的盈利期望.
正确答案
解: (Ⅰ) 设恰有两台仪器完全合格的事件为,每台仪器经两道工序检验完全合格的概率为
所以
(Ⅱ) 每月生产的仪器完全合格的台数可为四种
所以赢利额的数额可以为
当时,
当时,
当时,
当时,
每月的盈利期望
所以每月的盈利期望值为万元
解析
见答案
考查方向
本题主要考查离散型随机变量的期望与方差,相互独立事件同时发生的概率,属于概率综合题,中档题。
解题思路
第1问直接用公式求解,第2问实际上求的是每月盈利的期望值。
易错点
计算能力弱
知识点
18.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目。纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如下表所示:
(Ⅰ)若从抗战老兵中随机抽取2人进行座谈,求这2人参加纪念活动的环节数不同的概率;
(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有名,求
的分布列和数学期望.
正确答案
见解析
解析
试题分析:本题属于概率中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对应取值的概率.
(Ⅰ)设“这2名抗战老兵参加纪念活动的环节数不同”为事件,则“这2名抗战老兵参加纪念活动的环节数相同”为事件
,
根据题意可知,
由对立事件的概率计算公式可得,
故这2名抗战老兵参加纪念活动的环节数不同的概率为.
(Ⅱ)根据题意可知随机变量的可能取值为0,1,2,3且
,
,
则随机变量的分布列为:
则数学期望
考查方向
本题考查了离散型随机变量的概率分布列和数学期望,涉及到概率计算,是高考题中的高频考点.
解题思路
本题考查离散型随机变量的概率分布列和数学期望,解题步骤如下:
1、利用概率公式求解。
2、利用离散型随机变量的概率分布列和数学期望公式求解。
易错点
概率计算易错。
知识点
16.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分。 两人4局的得分情况如下:
(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;
(Ⅱ)如果,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为
,求
的分布列和数学期望;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出的所有可能取值.(结论不要求证明)
正确答案
(Ⅰ);
(Ⅱ)
(Ⅲ),
,
.
解析
试题分析:本题属于概率与统计的基本问题,题目的难点是逐渐由易到难,(1)直接按照步骤来求,(2)要注意正确求出每个变量对应的概率,(3)要注意利用离散型随机变量的分布列的性质验证分布列的正确性。
(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件,
由题意,得,
所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为.
(Ⅱ)解:由题意,的所有可能取值为
,
,
,
,
且,
,
,
,
所以的分布列为:
所以.
(Ⅲ)解:的可能取值为
,
,
.
考查方向
本题主要考查了离散型随机变量的分布列、期望与方差,离散型随机变量的分布列大体有以下几类:
1.两点分布,
2.二项分布,超几何分布.
解题思路
本题考查离散型随机变量的分布列、期望与方差,解题步骤如下:
1.利用古典概型的概率公式进行求解;
2.写出随机变量的所有可能取值,分别求出每个变量对应的概率;
3.列表得到随机变量的分布列;
4.根据数学期望公式求其期望;
5.列出可能取值。
易错点
第二问中每个随机变量的概率不完全正确,导致结果错误。
知识点
18.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:
(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求的值;
(Ⅱ)如果,
,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为
,
,求
的概率;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出的所有可能取值.(结论不要求证明)
正确答案
(Ⅰ)15
(Ⅱ)的概率为
;
(Ⅲ) 的所有可能取值
,
,
解析
(Ⅰ)解:由题意,得,即
.
因为在乙的4局比赛中,随机选取1局,则此局得分小于6分的概率不为零,
所以中至少有一个小于6,
又因为,且
,
所以,
所以.
(Ⅱ)解:设 “从甲、乙的4局比赛中随机各选取1局,且得分满足”为事件
记甲的4局比赛为,
,
,
,各局的得分分别是6,6,9,9;乙的4局比赛
为,
,
,
,各局的得分分别是7,9,6,10.
则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种, 它们是:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
而事件的结果有8种,它们是:
,
,
,
,
,
,
,
,
因此事件的概率
.
(Ⅲ)解:的可能取值为
,
,
.
考查方向
解题思路
1、第一问由选取1局得分小于6分的概率不为零,可知x,y取值均为小于或等于5的自然数;结合乙的平均得分高于甲的平均得分确定的的取值范围可得出正确答案。
2、第二问通过列举从甲、乙的4局比赛中随机各选取1局,所有可能的结果可以找出满足题意的事件数目,最终求出其概率。
3、第三问通过平均分相同得出的值结合x,y取值均为小于或等于10的自然数这一条件可以写出
的所有可能取值.
易错点
不能从题目中提取出,且
隐含信息而不能得出答案;
知识点
已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
17.求第一次检测出的是次品且第二次检测出的是正品的概率
18.已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所
需要的检测费用(单位:元),求X的分布列和均值(数学期望)
正确答案
(1)
解析
(Ⅰ)记“第一次检查出的是次品且第二次检测出的是正品”为事件.
.
解题思路
(Ⅰ)依据题目所给的条件可以先设“第一次检查出的是次品且第二次检测出的是正品”为事件.得出
.
易错点
计算事件发生的概率错误
分布列表示不出来,求相应的概率时错误,不会求数学期望。
正确答案
(2).
解析
(Ⅱ)的可能取值为
.
.
.
.
故的分布列为
.
考查方向
解题思路
(Ⅱ)的可能取值为
.依此求出各自的概率
,列出分布列,求出期望
.
易错点
分布列表示不出来,求相应的概率时错误,不会求数学期望。
18. 某卫视的大型娱乐节目现场,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否通过进入下一轮,甲、乙、丙三名老师都有“通过”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率均
为
,且三人投票相互没有影响,若投票结果中至少有两张“通过”票,则该节目获得“通过”,否则该节目不能获得“通过”。
(I)求某节目的投票结果获“通过”的概率;
(II)记某节目投票结果中所含“通过”和“待定”票票数之和为X,求X的分布列和数学期望.
正确答案
(1);
(2)2
解析
试题分析:本题属于离散型随机变量应用中的基本问题,题目的难度是逐渐由易到难
(Ⅰ)设“某节目的投票结果获“通过”为事件A,
则事件A包含该节目获2张“通过票”或该节目获3张“通过票”,
∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率为,
且三人投票相互没有影响,∴某节目的投票结果是最终获“通过”的概率为:
(Ⅱ)所含“通过”和“待定”票票数之和的所有取值为0,1,2,3,
,
,
,
,
∴的分布列为:
.
考查方向
解题思路
本题考查离散型随机变量应用,解题步骤如下:
(1)设“某节目的投票结果是最终获一等奖”为事件A,则事件A包含该节目可以获2张“获奖票”或该节目可以获3张“获奖票”,由此能求出某节目的投票结果是最终获一等奖的概率.
(2)所含“获奖”和“待定”票数之和X的值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列及数学期望.
易错点
1、第一问中弄清事件类型
2、第二问中计算不正确得不到正确结论。
知识点
某市规定,高中学生三年在校期间参加不少于小时的社区服务
才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段
,
,
,
,
(单位:小时)进行统计,其频率分布直方图如图所示.
19.求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
20.从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量
的分布列和数学期望
和方差
.
正确答案
见解析
解析
根据题意,参加社区服务时间在时间段小时的学生人数为
(人),参加社区服务时间在时间段
小时的学生人数为
(人).所以抽取的200位学生中,参加社区服务时间不少于90小时的学生
人数为
人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为
考查方向
解题思路
第1问根据样本数据估计总体数据,第2问先把所有可能的情况列出来,然后用频率求概率
易错点
数据收集整理出错
正确答案
见解析
解析
由19题可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小
时的概率为由已知得,随机变量
的可能取值为
.
所以;
;
;
.
随机变量的分布列为
因为~
,所以
考查方向
解题思路
第1问根据样本数据估计总体数据,第2问先把所有可能的情况列出来,然后用频率求概率
易错点
数据收集整理出错
甲、乙两人投篮命中的概率分别为与,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.
31.求比赛结束后甲的进球数比乙的进球数多1个的概率;
32.设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).
正确答案
(1);
解析
(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:
甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.
所以比赛结束后甲的进球数比乙的进球数多1个的概率
P=.
考查方向
解题思路
本题考查概率的求法,解题步骤如下:
(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.由此能求出比赛结束后甲的进球数比乙的进球数多1个的概
率.
易错点
解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.
正确答案
(2)E(ξ)=1
解析
(2)ξ的取值为0,1,2,3,所以 ξ的概率分布列为
所以数学期望E(ξ)==1.
考查方向
解题思路
本题考查概率的求法,解题步骤如下:
(2)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
易错点
解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.
23.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加。现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名。从这8名运动员中随机选择4人参加比赛.
(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;
(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.
正确答案
见解析
解析
(1)由已知,有
所以事件发生的概率为
.
(2)随机变量的所有可能取值为
所以随机变量的分布列为
所以随机变量的数学期望
考查方向
解题思路
1利用已知条件把“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会的组合数求出,进而求出概率
易错点
本题必须注意审题,否则求解错误。
知识点
扫码查看完整答案与解析