热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

某工厂生产A,B两种元件,已知生产A元件的正品率为75%,生产B元件的正品率为80%,生产1个元件A,若是正品则盈利50元,若是次品则亏损10元;生产1个元件B,若是正品则盈利40元,若是次品则亏损5元。

(1)求生产5个元件A所得利润不少于140元的概率;

(2)设X为生产1个元件A和1个元件B所得总利润,求X的分布列和数学期望。

正确答案

见解析。

解析

知识点

互斥事件、对立事件的概率离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

[来源:学。科。网]

(1)完成被调查人员的频率分布直方图;

(2)若从年龄在的被调查者中各随机选取两人进行追踪调查,记选中的4人中不造成“车辆限行”的人数为,求随机变量的分布列和数学期望.

正确答案

见解析

解析

知识点

离散型随机变量及其分布列、均值与方差频率分布表频率分布直方图
1
题型:简答题
|
简答题 · 13 分

某单位从一所学校招收某类特殊人才,对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:

例如,表中运动协调能力良好且逻辑思维能力一般的学生有人,由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为

(1)求的值;

(2)从参加测试的位学生中任意抽取位,求其中至少有一位运动协调能力或逻辑思

维能力优秀的学生的概率;

(3)从参加测试的位学生中任意抽取位,设运动协调能力或逻辑思维能力优秀的学

生人数为,求随机变量的分布列及其数学期望

正确答案

见解析

解析

(1)设事件:从位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生。

由题意可知,运动协调能力或逻辑思维能力优秀的学生共有人。

解得

所以。                                         …………… 4分

(2)设事件:从人中任意抽取人,至少有一位运动协调能力或逻辑思维能力优秀的学生。

由题意可知,至少有一项能力测试优秀的学生共有人。

。                    …………… 7分

(3)的可能取值为

位学生中运动协调能力或逻辑思维能力优秀的学生人数为人。

所以

所以的分布列为

所以,。         …………… 13分

知识点

古典概型的概率离散型随机变量及其分布列、均值与方差
1
题型:填空题
|
填空题 · 4 分

某个不透明的袋中装有除颜色外其它特征完全相同的8个乒乓球(其中3个是白色球,5个是黄色球),小李同学从袋中一个一个地摸乒乓球(每次摸出球后不放回),当摸到的球是黄球时停止摸球,用随机变量表示小李同学首先摸到黄色乒乓球时的摸球次数,则随机变量的数学期望值    。

正确答案

解析

知识点

离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

下表是某市从3月份中随机抽取的10天空气质量指数(AQI)和“PM2.5”(直径小于等于2.5微米的颗粒物)24小时平均浓度的数据,空气质量指数(AQI)小于100表示空气质量优良。

(1)根据上表数据,估计该市当月某日空气质量优良的概率;

(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件M为“抽取的两个日期中,当天‘PM2.5’的24小时平均浓度不超过75”,求事件M发生的概率;

(3)在上表数据中,在表示空气质量优良的日期中,随机抽取3天,记为“PM2.5”24小时平均浓度不超过75的天数,求的分布列和数学期望。

正确答案

见解析。

解析

(1)由上表数据知,10天中空气质量指数(AQI)小于100的日期有:

A2 、A3 、A5 、A9 、A10共5天,-

故可估计该市当月某日空气质量优良的概率.-

(2)由(1)知10天中表示空气质量为优良的天数为5,当天“PM2.5”的24小时平均浓度不超过75有编号为A2 、A9 、A10,共3天,-

故事件M发生的概率.

(3)由(1)知,的可能取值为1,2,3. -

-

-

的分布列为

-

的数学期望

知识点

古典概型的概率离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.

某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).

(1)从这15天的数据中任取3天的数据,记表示空气质量达到一级的天数,求的分布列;

(2)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.

正确答案

见解析。

解析

知识点

离散型随机变量及其分布列、均值与方差茎叶图
1
题型:简答题
|
简答题 · 12 分

某地为绿化环境,移栽了银杏树2棵,梧桐树3棵.它们移栽后的成活率分别为,每棵树是否存活互不影响,在移栽的5棵树中:

(1)求银杏树都成活且梧桐树成活2棵的概率;

(2)求成活的棵树的分布列与期望.

正确答案

见解析。

解析

(1)设表示“银杏树都成活且梧桐树成活2棵”

表示“银杏树成活棵”;

表示“梧桐树成活棵”;

(2)可能的取值:

同理:

的分布列为:

知识点

相互独立事件的概率乘法公式离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 13 分

某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格,教育部门在全市随机抽取学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示。

(1)求抽取的位学生中,参加社区服务时间不少于小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于小时的概率;

(2)从全市高中学生(人数很多)中任意选取位学生,记位学生中参加社区服务时间不少于小时的人数,试求随机变量的分布列和数学期望

正确答案

见解析

解析

(1)根据题意,

参加社区服务时间在时间段小时的学生人数为(人),

参加社区服务时间在时间段小时的学生人数为(人)。

所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为人。

所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的

概率估计为                     ……………5分

(2)由(1)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为

由已知得,随机变量的可能取值为

所以

随机变量的分布列为

因为 ~,所以。               ……………13分

知识点

古典概型的概率离散型随机变量及其分布列、均值与方差频率分布直方图
1
题型:简答题
|
简答题 · 12 分

为了调查我市在校中学生参加体育运动的情况, 从中随机抽取了16名男同学和14名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱。

(1)根据以上数据完成以下2×2列联表:

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?

(3)将以上统计结果中的频率视作概率, 从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值。

正确答案

见解析。

解析

(1)

(2)假设:是否喜爱运动与性别无关,由已知数据可求得:

因此,在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关

(3)统计结果中喜爱运动的中学生所占的频率为.

喜爱运动的人数为的取值分别为:0,1,2, 3, 则有:

    

     

喜爱运动的人数为的分布列为:

因为~, 所以喜爱运动的人数的值为

知识点

古典概型的概率离散型随机变量及其分布列、均值与方差独立性检验的应用
1
题型:简答题
|
简答题 · 12 分

某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成,规定:至少正确完成其中道题的便可通过,已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响。

(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;

(2)请分析比较甲、乙两人谁的面试通过的可能性大?

正确答案

见解析

解析

(1)设甲正确完成面试的题数为, 则的取值分别为,            ………1分

;                                         ………3分

考生甲正确完成题数的分布列为

,                             ………………4分

设乙正确完成面试的题数为,则取值分别为,      ………………5分

,

,

,                                ………………7分

考生乙正确完成题数的分布列为:

,                  ………………8分

(2)因为,        ……………10分

,  ……12分

(或)。

所以

(或:因为,,

所以, )

综上所述,

从做对题数的数学期望考查,两人水平相当;

从做对题数的方差考查,甲较稳定;

从至少完成道题的概率考查,甲获得面试通过的可能性大,     ……………13分

知识点

古典概型的概率离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

17.空气质量指数 (单位:)表示每立方米空气中可入肺颗粒物的含量,这

个值越高,就代表空气污染越严重:

甲、乙两城市2013年2月份中的15天对空气质量指数进行监测,获得

日均浓度指数数据如茎叶图所示:

(1)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?

(注:不需说明理由)

(2)在乙城市15个监测数据中任取个,设为空气质

量类别为优或良的天数,求的分布列及数学期望。

正确答案

见解析。

解析

(1)甲城市空气质量总体较好,

(2)的取值为

所以的分布列为:

数学期望

知识点

离散型随机变量及其分布列、均值与方差茎叶图
1
题型:简答题
|
简答题 · 13 分

正确答案

见解析

解析

(1)由题意可知

(2)先用反证法证明

,∴

同理可知,∴

由题目所有数和为

与题目条件矛盾

易知当时,存在

的最大值为1

(3)的最大值为.

首先构造满足

.

经计算知,中每个元素的绝对值都小于1,所有元素之和为0,且

.

下面证明是最大值. 若不然,则存在一个数表,使得.

的定义知的每一列两个数之和的绝对值都不小于,而两个绝对值不超过1的数的和,其绝对值不超过2,故的每一列两个数之和的绝对值都在区间中. 由于,故的每一列两个数符号均与列和的符号相同,且绝对值均不小于.

中有列的列和为正,有列的列和为负,由对称性不妨设,则. 另外,由对称性不妨设的第一行行和为正,第二行行和为负。

考虑的第一行,由前面结论知的第一行有不超过个正数和不少于个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于(即每个负数均不超过). 因此

的第一行行和的绝对值小于,与假设矛盾. 因此的最大值为

知识点

离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有两条路线(如图),路线上有三个路口,各路口遇到红灯的概率均为路线上有两个路口,各路口遇到红灯的概率依次为.

(1)若走路线,求最多遇到1次红灯的概率;

(2)若走路线,求遇到红灯次数的X的数学期望;

(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

正确答案

见解析

解析

知识点

n次独立重复试验中恰好发生k次的概率离散型随机变量及其分布列、均值与方差
1
题型:简答题
|
简答题 · 12 分

为考察高中生的性别与是否喜欢数学课程之间的关系,在我市某普通中学高中生中随机抽取200名学生,得到如下列联表:

(1)根据独立性检验的基本思想,约有多大的把握认为“性别与喜欢数学课之间有关系”?

(2)若采用分层抽样的方法从不喜欢数学课的学生中随机抽取5人,则男生和女生抽取的人数分别是多少?

(3)从(2)随机抽取的5人中再随机抽取3人,该3人中女生的人数记为,求的数学期望.

正确答案

见解析。

解析

(1)∵

∴约有97.5%以上的把握认为“性别与喜欢数学课之间有关系”.

(2)男生抽取的人数有:(人)

女生抽取的人数各有:(人)

(3)由(2)可知,男生抽取的人数为2人,女生抽取的人数为3人,

所以的取值为1,2,3.

所以的分布列为:

所以的数学期望为

知识点

离散型随机变量及其分布列、均值与方差分层抽样方法独立性检验的基本思想
1
题型: 单选题
|
单选题 · 5 分

一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为,已知他投篮一次得分的期望是2,则的最小值为

A

B

C

D

正确答案

D

解析

知识点

利用基本不等式求最值离散型随机变量及其分布列、均值与方差
下一知识点 : 算法初步
百度题库 > 高考 > 理科数学 > 概率与统计

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题