热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 5 分

11.在△ABC中,A=120°,AB=4.若点D在边BC上,且=2AD,则AC的长为        

正确答案

3

解析

△ABC中,∠BAC=120°,AB=4,点D在边BC上,=2

两边同时平方可得:

解得(舍)

考查方向

本题主要考查了利用平面向量的线性运算与数量积运算求三角形边长的应用问题.

解题思路

画出图形,结合图形,利用=2,得出,再利用平

面向量的数量积求出即可

易错点

利用向量求,找不到等式求解

知识点

三角形中的几何计算向量在几何中的应用
1
题型:填空题
|
填空题 · 5 分

13.△ABC的内角A,B,C的对边分别为a,b,c且ac=,A=,则B=_______.

正确答案

解析

由ac=,A=及正弦定理得化简得,又,联立解得所以B=

考查方向

本题主要考查了正余定理及三角诱导公式,考查考生的运算能力。

解题思路

由ac=,A=及正弦定理得,再利用可算得从而得到B=

易错点

忽视隐含条件

知识点

三角形中的几何计算
1
题型:简答题
|
简答题 · 14 分

中,角的对边分别是,向量互相垂直.

16.求的值;

17.若,求的面积

第(1)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于向量的坐标运算、正余弦定理及三角形的面积公式的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:因为 ,所以,所以,所以,而,所以.

考查方向

本题考查了向量的坐标运算、正余弦定理的综合应用等知识点。

解题思路

利用向量得出数量积为零,整理即可求出的值;

易错点

相关知识点不熟容易处错。

第(2)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于向量的坐标运算、正余弦定理及三角形的面积公式的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:

由余弦定理得,

化简得,,解得,3或5, 而,又,

.

考查方向

本题考查了向量的坐标运算、正余弦定理的综合应用等知识点。

解题思路

利用余弦定理求出a边,在利用面积公式即可求出的面积

易错点

相关知识点不熟容易处错。

1
题型:简答题
|
简答题 · 12 分

在△中,角分别是边的对角,且

17.若,求的值;

18.若,求的值.

第(1)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于正余弦定理的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:

因为,由正弦定理有.又,所以.

因为,所以.从而

因此.

考查方向

本题考查了正余弦定理的综合应用等知识点。

解题思路

直接利用正弦定理及边角关系进行计算;

易错点

相关知识点不熟容易处错。

第(2)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于正余弦定理的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:

,则.所以.

考查方向

本题考查了正余弦定理的综合应用等知识点。

解题思路

,则,让背后直接利用余弦定理进行计算.

易错点

相关知识点不熟容易处错。

1
题型:填空题
|
填空题 · 5 分

13.锐角三角形ABC中,分别是三内角A,B,C的对边,设,则的取值范围是________.

正确答案

解析

利用正弦定理得出

又∵

考查方向

本题主要考察了二倍角的正弦弦公式,考察了正弦定理的应用,考察了余弦函数的性质

解题思路

该题解题思路如下1、利用正弦定理得出2、使用倍角公式化简得到3、根据题意三角形为锐角三角形,得出角A的范围 4、利用余弦函数的性质得出取值范围,

易错点

该题易于忽略了对A的范围的判断,该题属于中档题

知识点

正弦定理余弦定理三角形中的几何计算
下一知识点 : 解三角形的实际应用
百度题库 > 高考 > 理科数学 > 三角形中的几何计算

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题