热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

10.设函数是函数的导函数,,且,则(   )

A

B

C

D

正确答案

D

解析

有题意知导函数于原函数之间没有用变量x联系,可知函数与有关,可构造函数为,根据定积分得原函数函数确定c=2,,即,解得,故选D

考查方向

本题主要考察导数的四则运算,特殊函数导数的性质,以及根据性质构造函数

解题思路

该题隐含突破点在于

1构造

2根据定积分得原函数函数确定c值,

3解指数不等式得出结果

易错点

本题易错于函数的构造过程,

知识点

导数的运算其它不等式的解法
1
题型: 单选题
|
单选题 · 5 分

10.函数是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,,则使得f(x)<0成立的x的取值范围是(  )

A(﹣∞,﹣1)∪(0,1)

B(﹣1,0)∪(1,+∞)

C(﹣∞,﹣1)∪(1,+∞)

D(﹣1,0)∪(0,1)

正确答案

B

解析

考查方向

本题主要考查函数奇偶性,单调性及导函数运算和性质,不等式解法,数形结合思想的应用等知识,意在考查考生运算求解能力、分析问题和解决问题的能力,在近几年的各省高考题出现的频率较高,常与函数单调性、周期性、对称型、奇偶性等知识点交汇命题,较难。

解题思路

1、根据题意构造函数g(x)=xf(x)再得到函数g(x)的单调区间。

2、根据f(x)奇函数判断出g(x)是偶函数,将不等式进行转化,由图象求出不等式成立时x的取值范围即可。

易错点

1、本题由得不到函数模型,导致题目无法进行。

知识点

函数单调性的性质导数的运算其它不等式的解法
1
题型:简答题
|
简答题 · 13 分

18.已知函数. 

(Ⅰ)当时,求函数的单调区间和极值;

(Ⅱ)求证:当时,关于的不等式在区间上无解.

(其中

正确答案

(Ⅰ)函数的单调递增区间为, 的单调递减区间为

(Ⅱ)见解析

解析

(Ⅰ)因为,

所以

时,

所以的变化情况如下表:

所以处取得极大值,在处取得极小值

函数的单调递增区间为, 的单调递减区间为

(Ⅱ)证明:不等式在区间上无解,

等价于在区间上恒成立,

即函数在区间上的最大值小于等于1.

因为

,得

因为时,所以

时,成立,

函数在区间上单调递减,

所以函数在区间上的最大值为,

所以不等式在区间上无解;

时,的变化情况如下表:

所以函数在区间上的最大值为

此时,

所以

 .

综上,当时,关于的不等式在区间上无解。

考查方向

本题主要考察了用导数解决函数的单点区间和极值的问题,属于中档题,是高考的热点,解决此类题的关键:

1、(1)确定函数y=f(x)的定义域;

(2)求导数y′=f′(x);

(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;

(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.

2、当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值。

易错点

1、导数为零的点不一定是极值点 。

2、本题对k的分类讨论不全面导致错误。

知识点

函数的单调性及单调区间导数的运算不等式的证明
1
题型: 单选题
|
单选题 · 5 分

5.已知函数f(x)=-cosx,则f(x)在[0,2π]上的零点个数为

A1

B2

C3

D4

正确答案

C

解析

由图可知,2个函数图像有3个交点。A选项不正确,B选项不正确,D选项不正确,所以选C选项。

考查方向

本题主要考查函数图像及零点

解题思路

1、分别画出2个函数图像;

2、求出交点个数,即可得到结果。A选项不正确,B选项不正确,D选项不正确,所以选C选项。

易错点

本题易在画图时发生错误。

知识点

函数零点的判断和求解导数的运算
1
题型: 单选题
|
单选题 · 5 分

8.正项等比数列{}中的a1、a4031是函数f(x)=+6x-3的极值点,则

A1

B2

C

D-1

正确答案

A

解析

。B选项不正确,C选项不正确,D选项不正确,所以选A选项。

考查方向

本题主要考查极值和数列、对数运算

解题思路

1、求出a1,a4031

2、求出a2016,即可得到结果。B选项不正确,C选项不正确,D选项不正确,所以选A选项。

易错点

本题易在求a2016时发生错误。

知识点

对数的运算性质导数的运算等比数列的性质及应用
下一知识点 : 导数的加法与减法法则
百度题库 > 高考 > 理科数学 > 导数的运算

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题