热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

设函数.

25.讨论函数内的单调性并判断有无极值,有极值时求出极值;

26.记,求函数上的最大值D;

27.在(Ⅱ)中,取,求满足时的最大值.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)极小值为

解析

(Ⅰ).

.

因为,所以.

①当时,函数单调递增,无极值.

②当时,函数单调递减,无极值.

③当,在内存在唯一的,使得.

时,函数单调递减;时,函数单调递增.

因此,时,函数处有极小值.

考查方向

1.函数的单调性、极值与最值;2.绝对值不等式的应用.

解题思路

(Ⅰ)将代入.

求导得.因为,所以.按的范围分三种情况进行讨论:①当时,函数单调递增,无极值.②当时,函数单调递减,无极值.③当,在内存在唯一的,使得.时,函数单调递减;时,函数单调递增.因此,时,函数处有极小值.

易错点

函数求导错误,分类讨论能力弱,计算能力弱

第(2)小题正确答案及相关解析

正确答案

解析

(Ⅱ)时,

时,取,等号成立,

时,取,等号成立,

由此可知,函数上的最大值为.

考查方向

1.函数的单调性、极值与最值;2.绝对值不等式的应用.

解题思路

时,依据绝对值不等式可知,从而能够得出函数上的最大值为.

易错点

绝对值不等式性质运用错误,计算错误,不会合理放缩不等式

第(3)小题正确答案及相关解析

正确答案

(Ⅲ)1.

解析

(Ⅲ),即,此时,从而.

,则,并且.

由此可知,满足条件的最大值为1.

考查方向

1.函数的单调性、极值与最值;2.绝对值不等式的应用.

解题思路

(Ⅲ)当,即,此时,从而.依据式子特征取,则,并且.由此可知,满足条件的最大值为1

易错点

平均值不等式的性质,计算能力弱

1
题型:简答题
|
简答题 · 5 分

9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是           .

正确答案

7

知识点

导数的运算
1
题型:填空题
|
填空题 · 12 分

(本小题满分12分)

(I)讨论函数 的单调性,并证明当 >0时,

(II)证明:当 时,函数 有最小值.设gx)的最小值为,求函数 的值域.

正确答案

(Ⅰ)的定义域为.

且仅当时,,所以单调递增,

因此当时,

所以

(II)

由(I)知,单调递增,对任意

因此,存在唯一使得

时,单调递减;

时,单调递增.

因此处取得最小值,最小值为

于是,由单调递增

所以,由

因为单调递增,对任意存在唯一的

使得所以的值域是

综上,当时,的值域是

知识点

函数的值域函数单调性的判断与证明函数的最值及其几何意义导数的运算
1
题型: 单选题
|
单选题 · 5 分

10.已知R上的奇函数满足,则不等式的解集是(    )

A

B

C

D

正确答案

B

解析

,则,由>0得x>1,由<0得0<x<1,即当x=1时,函数取得极小值同时也是最小值h(1)=2,

,h(x)≥2,∴>-2+2=0,

>0,即在(0,+∞)上为增函数,则当x=1时,

则不等式等价为<0,即

则x<1,即不等式的解集是(0,1),

∴所以选项B为正确选项

考查方向

本题主要考查了导数的综合应用,属于难题,是高考的热点

解题思路

构造函数g(x),求函数的导数,判断函数的单调性,利用函数的单调性进行求解即可.

易错点

构造函数g(x)错误

知识点

函数奇偶性的性质导数的运算其它不等式的解法
1
题型: 单选题
|
单选题 · 5 分

12.设函数f’(x)是奇函数f (x)(x∈R)的导函数,f(-1)=0,当x>0时,x f’(x)-f (x)<0,则使得f (x) >0成立的x的取值范围是(  )

A(-∞,-1)∪(0,1)

B(-1,0)∪(1,+∞)

C(-∞,-1)∪(-1,0)

D(0,1)∪(1,+∞)

正确答案

A

知识点

函数奇偶性的性质导数的运算其它不等式的解法
1
题型: 单选题
|
单选题 · 3 分

15.下列各句中,加点的成语使用恰当的一项是( )

A近年来几乎每年都会有一部让人宵衣旰食的韩剧火爆荧屏,从《继承者们》到《来自星星的你》再到如今的《太阳的后裔》,这些韩剧都让剧迷们疯狂追捧。

B在西方英美法系国家,著名法官其实就是法理功底深厚的学者,法官的判决书往往连

篇累牍,一篇精彩的判决书甚至堪称出色的法学。

C已经路人皆知的品牌为何还要铺天盖地地投放广告?因为不管一个品牌知名度多么

大,品牌的轻度消费者是非常重要的,铺天盖地的投放广告是为了提醒和转换品牌的轻度消费者。

D刘局长在其履新大会上的讲话内容虽然简短,但主题鲜明,有理有据,语言质朴而又

犀利,没有官话和套话,真可谓切中要害,读来发聋振聩、催人奋进、发人深省。

正确答案

D

解析

A项,宵衣旰食:宵:夜间;衣:穿衣;旰:天已晚。天不亮就穿起衣来,时间晚了才吃饭。形容为处理国事而辛勤地工作。此句属于对象误用,应该为“废寝忘食”;B项,连篇累牍:累:重叠、堆积;牍:古代写字用的竹筒和木板。形容篇幅过多,文辞冗长。此成语带有贬义,此句属于褒贬不当,应该该为“洋洋洒洒”; C项,路人皆知:比喻人所共知的野心。此成语用来形容“品牌”不恰当。应该为“家喻户晓”。 D项,发聋振聩:聩:耳聋。声音很大,连耳聋的人也听得见。比喻用语言文字唤醒麻木的人。此句符合语境。

考查方向

重点考查考生正确辨析和使用成语的能力。

解题思路

根据语境和词义来分析。

易错点

容易望文生义。

知识点

导数的运算
1
题型:简答题
|
简答题 · 16 分

对于函数f(x),在给定区间[ab]内任取n+1(n≥2,nN*)个数x0x1x2,…,xn,使得

ax0x1x2<…<xn-1xnb,记S|f(xi+1)-f(xi)|.若存在与nxi(iniN)均无关的正数A,使得SA恒成立,则称f(x)在区间[ab]上具有性质V

22.若函数f(x)=-2x+1,给定区间为[-1,1],求S的值;

23.若函数f(x)=,给定区间为[0,2],求S的最大值;

24.对于给定的实数k,求证:函数f(x)=klnx 在区间[1,e]上具有性质V

第(1)小题正确答案及相关解析

正确答案

(1)4;

解析

(1)解:因为函数f(x)=-2x+1在区间[-1,1]为减函数,

所以f(xi+1)<f(xi),所以|f(xi+1)-f(xi)|= f(xi)-f(xi+1).

S|f(xi+1)-f(xi)|=[ f(x0)-f(x1)]+[ f(x1)-f(x2)]+…+[ f(xn-1)-f(xn)]

f(x0)-f(xn)=f(-1)-f(1)=4.

考查方向

本题考查了函数恒成立问题,考查学生综合运用所学知识分析问题解决新问题的能力

解题思路

本题考查函数恒成立问题,解题步骤如下:

1)先通过f(x)=-2x+1的单调性,直接求出|f(xi+1)-f(xi)|= f(xi)-f(xi+1)代入即可求出;

易错点

不会转化|f(xi+1)-f(xi)|,进而求出最值

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(2) 解:由f′(x)==0,得x=1.

x<1时,f′(x)>0,所以f (x)在(-∞,1)为增函数;

x>1时,f′(x)<0,所以f (x)在(1,+∞)为减函数;

所以f (x)在x=1时取极大值

xm≤1<xm+1mNmn-1,

S|f(xi+1)-f(xi)

=|f(x1)-f(0)|+…+|f(xm)-f(x m-1)|+|f(xm+1)-f(x m)|+|f(xm+2)-f(x m+1)|+…+|f(2)-f(x n-1)

=[f(x1)-f(0)]+…+[f(xm)-f(x m-1)]+|f(xm+1)-f(x m)|+[f(xm+1)-f(x m+2)]+…+[f(xn-1)-f(2)]

=[f(xm)-f(0)]+|f(xm+1)-f(x m)|+[f(xm+1)-f(2)].

因为|f(xm+1)-f(x m)|≤[f(1)-f(xm)]+[f(1)-f(xm+1)],当x m=1时取等号,

所以Sf(xm)-f(0)+f(1)-f(xm)+f(1)-f(xm+1)+f(xm+1)-f(2)

=2 f(1)-f(0)-f(2)=.

所以S的最大值为

考查方向

本题考查了函数恒成立问题,考查学生综合运用所学知识分析问题解决新问题的能力

解题思路

本题考查函数恒成立问题,解题步骤如下:

2)先研究f(x)=的单调性,在(-∞,1)为增函数,在(1,+∞)为减函数;转化得出[f(xm)-f(0)]+|f(xm+1)-f(x m)|+[f(xm+1)-f(2)],即Sf(xm)-f(0)+f(1)-f(xm)+f(1)-f(xm+1)+f(xm+1)-f(2)

求出即可;

易错点

不会转化|f(xi+1)-f(xi)|,进而求出最值

第(3)小题正确答案及相关解析

正确答案

(3)对于给定的实数k,函数f(x)=klnx 在区间[1,e]上具有性质V

解析

(3)证明:f′(x)=x=x∈[1,e].

①当k≥e2时,kx2≥0恒成立,即f′(x)≥0恒成立,所以f(x)在[1,e]上为增函数,

所以S|f(xi+1)-f(xi)|=[ f(x1)-f(x0)]+[ f(x2)-f(x1)]+…+[ f(x n)-f(xn-1)]

f(x n)-f(x0)=f(e)-f(1)=k+e2

因此,存在正数Ak+e2,都有SA,因此f(x)在[1,e]上具有性质V

②当k≤1时,kx2≤0恒成立,即f′(x)≤0恒成立,所以f(x)在[1,e]上为减函数,

所以S|f(xi+1)-f(xi)|=[ f(x0)-f(x1)]+[ f(x1)-f(x2)]+…+[ f(xn-1)-f(xn)]

f(x0)-f(xn)= f(1)-f(e)= e2k

因此,存在正数Ae2k,都有SA,因此f(x)在[1,e]上具有性质V

③当1<k<e2时,由f′(x)=0,得x;当f′(x)>0,得1≤x

f′(x)<0,得x≤e,因此f(x)在[1,)上为增函数,在(,e]上为减函数.

xmxm+1mNmn-1

S|f(xi+1)-f(xi)

=|f(x1)-f(x0)|+…+|f(xm)-f(x m-1)|+ |f(xm+1)-f(x m)|+ |f(xm+2)-f(x m+1)|+…+|f(xn)-f(x n-1)

f(x1)-f(x0)+…+f(xm)-f(x m-1) + |f(xm+1)-f(x m)|+ f(xm+1)-f(x m+2) +…+f(xn-1)-f(x n)

f(xm)-f(x0) + |f(xm+1)-f(x m)| + f(xm+1)-f(x n)

f(xm)-f(x0) + f(xm+1)-f(x n)+ f()-f(xm+1)+ f()-f(xm)

=2 f()-f(x0)-f(x n)=klnkk-[-+ke2]=klnk-2k+e2

因此,存在正数Aklnk-2k+e2,都有SA,因此f(x)在[1,e]上具有性质V

综上,对于给定的实数k,函数f(x)=klnxx2 在区间[1,e]上具有性质V

考查方向

本题考查了函数恒成立问题,考查学生综合运用所学知识分析问题解决新问题的能力

解题思路

本题考查函数恒成立问题,解题步骤如下:

3)先研究函数f(x)=klnxx2的单调性,分类讨论分别利用(1)和(2)问的方法求出即可

易错点

不会转化|f(xi+1)-f(xi)|,进而求出最值

1
题型:简答题
|
简答题 · 14 分

设函数(e是自然对数的底数).

27.若,求的单调区间;

28.若内无极值,求a的取值范围;

29.设,求证:.

注:.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了函数的单调性的判断,考察了函数最值,考察了导数的加法和减法运算,考察了函数恒成立问题,考察了函数性质的综合应用,考察了数学归纳法,考察了函数的分类讨论思想

解题思路

借助导函数的正负直接求出单调区间

易错点

本题易错在第二问中的信息转化:函数单调,第三问选错题方向

第(2)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了函数的单调性的判断,考察了函数最值,考察了导数的加法和减法运算,考察了函数恒成立问题,考察了函数性质的综合应用,考察了数学归纳法,考察了函数的分类讨论思想

解题思路

根据内无极值→内单调→恒正或者恒负,进而使用提参的方式得出结果

易错点

本题易错在第二问中的信息转化:函数单调,第三问选错题方向

第(3)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了函数的单调性的判断,考察了函数最值,考察了导数的加法和减法运算,考察了函数恒成立问题,考察了函数性质的综合应用,考察了数学归纳法,考察了函数的分类讨论思想

解题思路

本题解题思路

借助第二问的结论 使用数学归纳法证明结论

易错点

本题易错在第二问中的信息转化:函数单调,第三问选错题方向

1
题型:简答题
|
简答题 · 12 分

已知函数(其中).

25.如果函数有相同的极值点,求的值,并直接写出函数的单调区间;

26.令,讨论函数在区间上零点的个数。

第(1)小题正确答案及相关解析

正确答案

(1)

时,的递增区间为,,递减区间为

时,的递增区间为,递减区间为. ;

解析

(Ⅰ),则,

,得,而二次函数处有极大值,

所以,解得

时,的递增区间为,,递减区间为.

时,的递增区间为,递减区间为.

考查方向

本题主要考查利用导数研究函数的单调性,判断函数零点的个数等知识。意在考查考生的综合解决问题的能力和分类讨论的思想。

解题思路

先求导后得到原函数的极值点后结合二次函数即可求得a的值,后面利用常用的方法求单调区间;

易错点

不理解函数有相同的极值点导致无法求出a的值;

第(2)小题正确答案及相关解析

正确答案

(2)当时,函数有唯一零点;

时,函数有两不相等的零点。

解析

(Ⅱ)

,,

 当时,无实根,故的零点为,满足题意,

即函数有唯一零点

 当时,

,则的实数解为,故在区间上有唯一零点

,则的实数解为,故在区间上有两零点,

 当时,

,由于

此时在区间上有一实数解,故在区间上有唯一零点;

时,由于

时,数形结合可知在区间上有唯一实数解,

在区间上有唯一零点;

时,由于的对称轴为,故

所以在区间上有两个不等零点.

综上,当时,函数有唯一零点;

时,函数有两不相等的零点。

考查方向

本题主要考查利用导数研究函数的单调性,判断函数零点的个数等知识。意在考查考生的综合解决问题的能力和分类讨论的思想。

解题思路

按照判别式分类讨论各种情况下零点的个数。

易错点

不会确定分类的标准。

1
题型:简答题
|
简答题 · 14 分

设函数的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数.

24.求的解析式,并证明:当时,

25.设,证明:当时,.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ).证明:当时,,故

又由基本不等式,有,即

解析

(Ⅰ)由, 的奇偶性及,①得:    ②

联立①②解得.

时,,故                           

又由基本不等式,有,即          ④

考查方向

1、导数在研究函数的单调性与极值中的应用;

解题思路

(Ⅰ)将等式来替换,并结合已知是奇函数,是偶函数可得于是联立方程组即可求出的表达式;当时,由指数与指数函数的性质知,进而可得到然后再由基本不等式即可得出

易错点

导函数计算出错。

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)由(Ⅰ)得

时,等价于等价于

 ⑧于是设函数 ,由⑤⑥,有

 当时,(1)若,由③④,得,故上为增函数,从而,即,故⑦成立.(2)若,由③④,得,故上为减函数,从而,即,故⑧成立.综合⑦⑧,得 .

解析

(Ⅱ)由(Ⅰ)得 ,        ⑤

,        ⑥

时,等价于,        ⑦

等价于           ⑧

设函数 ,由⑤⑥,有

时,(1)若,由③④,得,故上为增函数,从而,即,故⑦成立.(2)若,由③④,得,故上为减函数,从而,即,故⑧成立.综合⑦⑧,得 .

考查方向

函数的基本性质;

解题思路

(Ⅱ)由(Ⅰ)得.于是要证明,即证,也就是证明,即证于是构造函数,利用导数在函数的单调性与极值中的应用即可得出结论成立.

易错点

计算量大。

下一知识点 : 导数的加法与减法法则
百度题库 > 高考 > 理科数学 > 导数的运算

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题