热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 15 分

已知,函数

(1)求曲线在点处的切线方程;

(2)当时,求的最大值。

正确答案

(1)(2)

解析

(1)由已知得:,且,所以所求切线方程为:,即为:

(2)由已知得到:,其中,当时,

(1)当时,,所以上递减,所以,因为

(2)当,即时,恒成立,所以上递增,所以,因为

(3)当,即时,

   ,且,即

所以,且

所以

所以

,所以

(ⅰ)当时,,所以时,递增,时,递减,所以,因为

,又因为,所以,所以,所以

(ⅱ)当时,,所以,因为,此时,当时,是大于零还是小于零不确定,所以

1当时,,所以,所以此时

2当时,,所以,所以此时

综上所述:

知识点

函数的值域导数的几何意义导数的运算
1
题型:简答题
|
简答题 · 14 分

已知a是给定的实常数,

设函数的一个极大值点.

(1)求b的取值范围;

(2)设的3个极值点,问是否存在实数b,可找到,使得的某种排列(其中)依次成等差数列?若存在,示所有的b及相应的若不存在,说明理由.

正确答案

见解析

解析

(1)解:

于是可设的两实根,且

1)当时,则不是的极值点,此时不合题意

2)当时,由于的极大值点,

  即

所以

所以的取值范围是(-∞,

(2)解:由(Ⅰ)可知,假设存了满足题意,则

1)当时,则

于是

此时

2)当时,则

①若

于是

于是

此时

②若

于是

于是

此时

综上所述,存在满足题意

知识点

导数的几何意义导数的运算等差数列的性质及应用
1
题型: 单选题
|
单选题 · 5 分

已知为R上的可导函数,且均有,则有                                    (    )

A

B

C

D

正确答案

D

解析

略。

知识点

导数的运算
1
题型: 单选题
|
单选题 · 5 分

已知为自然对数的底数,设函数,则

A时,处取得极小值

B时,处取得极大值

C时,处取得极小值

D时,处取得极大值

正确答案

C

解析

时,,且,所以当时,,函数递增;当时,,函数递减;所以当时函数取得极小值;所以选C

知识点

导数的几何意义导数的运算
1
题型:简答题
|
简答题 · 12 分

21.已知函数.

(1)当时,求函数的单调区间;

(2)若函数有两个极值点,且,求证:;

(3)设,对于任意时,总存在,使成立,求实数的取值范围.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

导数的运算
下一知识点 : 导数的加法与减法法则
百度题库 > 高考 > 理科数学 > 导数的运算

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题