- 函数单调性的性质
- 共479题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
已知函数 ,且( )
正确答案
解析
由得 解得 ,所以 ,由 得 ,即,故选C
知识点
设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数 ”,是“函数g(x)=(2-a) 在R上是增函数”的
正确答案
解析
p:“函数f(x)= ax在R上是减函数 ”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
知识点
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)已知函数具有性质。给定设为实数,
,,且,
若||<||,求的取值范围。
正确答案
见解析。
解析
(1)(i)
∵时,恒成立,
∴函数具有性质;
(ii)(方法一)设,与的符号相同。
当时,,,故此时在区间上递增;
当时,对于,有,所以此时在区间上递增;
当时,图像开口向上,对称轴,而,
对于,总有,,故此时在区间上递增;
(方法二)当时,对于,
所以,故此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间 上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(2)(方法一)由题意,得:
又对任意的都有>0,
所以对任意的都有,在上递增。
又。
当时,,且,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。
①当时,有,
,得,同理可得,所以由的单调性知、,
从而有||<||,符合题设。
②当时,,
,于是由及的单调性知,所以||≥||,与题设不符。
③当时,同理可得,进而得||≥||,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
知识点
22,已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。
(1)用和表示;
(2)求对所有都有成立的的最小值;
(3)当时,比较与的大小,并说明理由。
正确答案
见解析
解析
(1)由已知得,交点A的坐标为,对则抛物线在点A处的切线方程为
(2)由(1)知f(n)=,则
即知,对于所有的n成立,特别地,取n=2时,得到a≥
当,
>2n3+1
当n=0,1,2时,显然
故当a=时,对所有自然数都成立
所以满足条件的a的最小值是。
(3)由(1)知,则,
下面证明:
首先证明:当0<x<1时,
设函数
当
故g(x)在区间(0,1)上的最小值g(x)min=g
所以,当0<x<1时,g(x)≥0,即得
由0<a<1知0<ak<1(),因此,从而
知识点
扫码查看完整答案与解析