- 不等式与函数的综合问题
- 共21题
已知函数,
25.若函数在上是减函数,求实数的取值范围;
26.令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
27.当时,证明:
正确答案
见解析
解析
考查方向
解题思路
第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。
易错点
求导数错误,参数的取值范围分类错误
正确答案
见解析
解析
考查方向
解题思路
第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。
易错点
求导数错误,参数的取值范围分类错误
正确答案
见解析
解析
考查方向
解题思路
第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。
易错点
求导数错误,参数的取值范围分类错误
19.已知函数(a,bR),记M(a,b)是|f(x)|在区间[-1,1]上的最大值。
(1)证明:当|a|≥2时,M(a,b)≥2;
(2)当a,b满足M(a,b)≤2,求|a|+|b|的最大值.
正确答案
(1)详见解析;(2)3;
解析
试题分析:(1)分析题意可知在上单调,从而可知M(a,b)=max,分类讨论a的取值范围即可求解;(2)分析题意可知|a|+|b|=,再由M(a,b) ≤2可得|1+a+b|=|f(1)|2,|1-a+b|=f(1) 2,即可求证.
(1)由f(x)= ,得对称轴为直线,由|a|2,得,故f(x)在上单调,∴M(a,b)=max{|f(1)|,|f(-1)|},当a2时,由f(1)-f(-1)=2a4,得max{f(1),f(-1)} 2,即M(a,b) 2,当a-2时,由f(-1)-f(1)=2a4,得max{f(1),f(-1)} 2,即M(a,b) 2,综上,当|a|2时,M(a,b)2;
(2)由M(a,b)2得|1+a+b|=f(1) 2,|1-a+b|=|f(1)| 2,故|a+b|3,且在上的最大值为2,即M(2,-1)=2,∴|a|+|b|3,当a=2,b=-1时,|a|+|b|=3,且在上的最大值为2,即M(2,-1)=2,∴|a|+|b|的最大值为3.
考查方向
解题思路
(1)根据a的取值范围,得到函数在[-1,1]上的单调性,分类讨论证得结论;(2)由题中给出的新定义进行求解.
易错点
二次函数在闭区间上的单调性.
知识点
21.已知函数
(I)若函数与函数在点处有共同的切线l,求t的值;
(II)证明:;
(III)若不等式对所有的都成立,求实数a的取值范围.
正确答案
见解析
解析
考查方向
解题思路
本题解题思路
1)根据共同的切线的理解得到该点处导函数值与函数值都相等得到t
2)利用单调性确定绝对值内的正负,去掉绝对值号,利用对式子进行证明
3)构造关于m的一次函数,把x当作参数消掉m后再使用恒成立问题的解答得出结果
易错点
本题易错在以下几个方面
1)对共同的切线理解不足,第一问出错
2)不能有效去掉绝对值,使用错的解题思想
3)变量间关系不能有效理清
知识点
2. 已知,,则是的( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
2.关于x的不等式:<2的解是( )
正确答案
–1<x<2
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析