热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知函数

25.若函数上是减函数,求实数的取值范围;

26.令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

27.当时,证明:

第(1)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。

易错点

求导数错误,参数的取值范围分类错误

第(2)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。

易错点

求导数错误,参数的取值范围分类错误

第(3)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。

易错点

求导数错误,参数的取值范围分类错误

1
题型:简答题
|
简答题 · 15 分

19.已知函数(a,bR),记M(a,b)是|f(x)|在区间[-1,1]上的最大值。

(1)证明:当|a|≥2时,M(a,b)≥2;

(2)当a,b满足M(a,b)≤2,求|a|+|b|的最大值.

正确答案

(1)详见解析;(2)3;

解析

试题分析:(1)分析题意可知上单调,从而可知M(a,b)=max,分类讨论a的取值范围即可求解;(2)分析题意可知|a|+|b|=,再由M(a,b) ≤2可得|1+a+b|=|f(1)|2,|1-a+b|=f(1) 2,即可求证.

(1)由f(x)= ,得对称轴为直线,由|a|2,得,故f(x)在上单调,∴M(a,b)=max{|f(1)|,|f(-1)|},当a2时,由f(1)-f(-1)=2a4,得max{f(1),f(-1)} 2,即M(a,b) 2,当a-2时,由f(-1)-f(1)=2a4,得max{f(1),f(-1)} 2,即M(a,b) 2,综上,当|a|2时,M(a,b)2;

(2)由M(a,b)2得|1+a+b|=f(1) 2,|1-a+b|=|f(1)| 2,故|a+b|3,且上的最大值为2,即M(2,-1)=2,∴|a|+|b|3,当a=2,b=-1时,|a|+|b|=3,且上的最大值为2,即M(2,-1)=2,∴|a|+|b|的最大值为3.

考查方向

本题考查了二次函数在闭区间上求最值,分类讨论思想的应用,属于中等题.

解题思路

(1)根据a的取值范围,得到函数在[-1,1]上的单调性,分类讨论证得结论;(2)由题中给出的新定义进行求解.

易错点

二次函数在闭区间上的单调性.

知识点

函数的单调性及单调区间导数的几何意义不等式与函数的综合问题
1
题型:简答题
|
简答题 · 14 分

21.已知函数

(I)若函数与函数在点处有共同的切线l,求t的值;

(II)证明:

(III)若不等式对所有的都成立,求实数a的取值范围.

正确答案

见解析

解析

考查方向

本题考察了导函数的几何意义,函数的单调性的判断,考察了函数最值,考察了导数的加法和减法运算,考察了简单复合函数的导函数,考察了函数恒成立问题,考察了函数性质的综合应用,考察了函数的分类讨论思想

解题思路

本题解题思路

1)根据共同的切线的理解得到该点处导函数值与函数值都相等得到t

2)利用单调性确定绝对值内的正负,去掉绝对值号,利用对式子进行证明

3)构造关于m的一次函数,把x当作参数消掉m后再使用恒成立问题的解答得出结果

易错点

本题易错在以下几个方面

1)对共同的切线理解不足,第一问出错

2)不能有效去掉绝对值,使用错的解题思想

3)变量间关系不能有效理清

知识点

函数性质的综合应用导数的运算不等式与函数的综合问题
1
题型: 单选题
|
单选题 · 5 分

2. 已知,,则的(     )

A必要不充分条件

B充分不必要条件

C充要条件               

D既不充分又不必要条件

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

不等式与函数的综合问题
1
题型:填空题
|
填空题 · 4 分

2.关于x的不等式:<2的解是(        )

正确答案

–1<x<2

解析

解析已在路上飞奔,马上就到!

知识点

不等式与函数的综合问题
下一知识点 : 基本不等式的实际应用
百度题库 > 高考 > 理科数学 > 不等式与函数的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题