- 等比数列的判断与证明
- 共122题
22.给定数列,记该数列前
项
中的最大项为
,即
;该数列后
项
中的最小项为
,即
;
.
(1)对于数列:3,4,7,1,求出相应的;
(2)若是数列
的前
项和,且对任意
有
其中
为实数,
且
.
①设,证明数列
是等比数列;
②若数列对应的
满足
对任意的正整数
恒成立,求实数
的取值范围.
正确答案
(1);
(2)①证明略;②.
解析
(1)当=1时,A1=3,B1=1,从而可求得
,
同理可得
(2)①当时,
所以
当时,
两式相减得所以
又
所以,数列是以
为首项、
为公比的等比数列.
②由①知: ;
又,
由于
所以由推得
所以对任意的正整数
恒成立.
因为所以
由,得
,
但且
,所以
解得
,所以
考查方向
本题考查数列的综合应用,突出考查考查推理论证与抽象思维的能力,是难题.数列的综合应用在近几年各省市的高考试卷中频频出现,是高考的热点问题,往往以等差数列、等比数列为载体,涉及递推公式、通项公式、前项和,结合数列单调性、数列恒成立等知识交汇命题.
解题思路
题(1),当=1时,A1=3,B1=1,从而可求得
,同理可求得
的值;
题(2)①,利用等比数列的定义证明是等比数列,对含有
的表达式
,先利用
(
)求得
与
递推关系,将
代入递推关系化简求得
,同时验证
的初始值
,从而证明
是等比数列;
题(2)②,由①得到的通项公式,根据
求得
,从而得到
关于不等式
,解得
的取值范围.
易错点
对含有的表达式
,往往利用
求通项时容易忽视
的要求,同时要验证
的初始值;对新定义
、
的不理解;恒成立问题的恰当转化.
知识点
18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.求证:是等比数列;设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1.
正确答案
(1);
(2)略.
解析
本题属于数列中的基本问题,题目的难度是逐渐由易到难.
(1)由已知得。所以
是以1为首项,2为公比的等比数列。
(2)由上知。
……①
……②
①-②得:。
即(n+l) Tn<nSn+1.
考查方向
本题考查了数列的问题.属于高考中的高频考点。
易错点
错位相减法求和时相减的结果项数易错。
知识点
5. 已知数列是等比数列,
是1和3的等差中项,则
=
正确答案
解析
通过观察,可以看到,b2,b16和b9之间的关系,可以得到=b92, ,又根据等差中项的性质,可以得到b9=(1+3)÷2=2,所以
=22=4
考查方向
解题思路
利用等差中项求b9,进而求解答案
易错点
发现不到b2b16和b9之间的关系。
知识点
12.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.
1 2 3 4 5 … 2013 2014 2015 2016
3 5 7 9 ………… 4027 4029 4031
8 12 16 ………………… 8056 8060
20 28 ………………………… 16116
…………………………………………
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为________________
正确答案
解析
数表的观察数表,可以发现规律:每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,-----,第2015行公差为,第2016行(最后一行)只有一个数为(1+2016)
=
,故选B。
考查方向
解题思路
观察数表,可以发现规律:每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,第2015行公差为,第2016行(最后一行)只有一个数,得出结果。
易错点
找不到规律。
知识点
6. 若成等比数列,则下列三个数:①
②
③
,必成等比数列的个数为( )
正确答案
解析
由题可知:等比数列的相邻两项相乘仍然是等比数列。
A选项不正确,C选项不正确,D选项不正确,所以选B选项。
考查方向
解题思路
代入特值计算或由等比数列的基本性质,即可得到结果。
A选项不正确,C选项不正确,D选项不正确,所以选B选项。
易错点
本题易在代特值时发生错误。
知识点
6.设等比数列的前
项的和为
,若
,则
的值为_______
正确答案
63
解析
由等比数列前n项和的性质 成等比数列,则
成等比数列,
,解得
.
设等比数列{an}的首项为a1,公比为q.显然q≠1,由题意得
解之得:
所以,
考查方向
本题主要考查等比数列的基本运算,等比数列的求和,考查学生的运算能力,难度中等.
解题思路
本题主要考查等比数列的基本运算,等比数列的求和。
解题步骤如下:利用公式或性质,列出等式。正确运算,得出结果。
易错点
本题易错点是公式会弄错,运算上出现错误。
知识点
9.在△ABC中,内角A,B,C 所对的边分别为 a,b,c,若 cos 2B+cosB=1-cos AcosC 则( )
正确答案
解析
由cos 2B+cosB=1-cos AcosC
得到sin 2B=cos Acos C-cos(A+C)
所以sin 2B=cos Acos C-cos AcosC+sinAsinC
所以sin 2B=sinAsinC
由正弦定理得,b2 = ac,所以a,b,c 成等比数列,故选B。
考查方向
解题思路
1.先利用三角函数中的公式将cos 2B+cosB=1-cos AcosC化简;
2.利用正弦定理得到边之间的关系即可。
易错点
1.对于题中cos 2B+cosB=1-cos AcosC的化简不会入手;
2.对于三角函数的化简出错
知识点
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数构成数列
,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
正确答案
(1)
当且
时,
;
当且
时,
.
而
,
(2)当时,
.
当时,
由 得
,
即,
解得
到2029年累积发放汽车牌照超过200万张
解析
本题属于数列的应用题,题目的难度是中等,本题的关键是:
(1)、从所给的数列中找出规律,并求出两数列的通项公式;
(2)、再根据数列的通项公式的分段函数性质,求出各自的前n项和,最后利用函数的性质给出答案。这类数列的应用题型较为常见。
考查方向
本题考查了数列与函数之间的综合应用,特别是分段函数与数列的应用
易错点
1、分类讨论:和
的区别2、分类讨论
的前n项和与
的前n项和
知识点
已知函数(
为常数,
且
),且数列
是首项为4,公差为2的等差数列.
(1)求证:数列是等比数列;
(2) 若,当
时,求数列
的前
项和
的最小值;
(3)若,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.
正确答案
(1) 证:由题意,
即,
∴
∴.
∵常数且
,∴
为非零常数,
∴数列是以
为首项,
为公比的等比数列.
(2) 当时,
,
,
所以
因为,所以,
是递增数列,
因而最小值为
(3) 由(1)知,,要使
对一切
成立,
即对一切
成立.
当时,
,
对一切
恒成立;
当时,
,
对一切
恒成立,只需
,
∵单调递增,
∴当时,
.
∴,且
,
∴.
综上所述,存在实数满足条件.
解析
本题属于数列与不等式的综合应用题,题目的难度是偏难,本题的关键是:
(1)、利函数的性质求出数列的通项公式;
(2)、利用等比数列的求和公式求出前n项和的表达式,并求出最小值;
(3)、根据数学归纳法,分类讨论出k的取值范围。
考查方向
本题考查了数列的综合应用题,特别是数列与不等式之间的应用题
易错点
1、由,得出
.不容易想到2、对
的讨论求出最小值讨论需要仔细3、数学归纳法的应用需要注意细节
知识点
18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.
(1)求证:是等比数列;
(2)设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1.
正确答案
(1);
(2)略.
解析
试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.
(1)由已知得。
所以是以1为首项,2为公比的等比数列。
(2)由上知。
……①
……②
①-②得:。
即(n+l) Tn<nSn+1.
考查方向
本题考查了数列的问题.属于高考中的高频考点。
解题思路
本题考查数列问题,解题步骤如下:
(1)利用等比数列的定义证明。
(2)利用错位相减法求和。
易错点
错位相减法求和时相减的结果项数易错。
知识点
扫码查看完整答案与解析