- 直线与圆锥曲线的位置关系
- 共144题
如图,在正方形中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连结
,过
做
轴的垂线与
交于点
。
(1)求证:点都在同一条抛物线上,并求该抛物线
的方程;
(2)过点做直线
与抛物线
交于不同的两点
,若
与
的面积比为
,求直线
的方程。
正确答案
(1); (2)
或
解析
(1)依题意,过且与x轴垂直的直线方程为
,
直线
的方程为
设坐标为
,由
得:
,即
,
都在同一条抛物线上,且抛物线
方程为
(2)依题意:直线的斜率存在,设直线
的方程为
由得
此时,直线
与抛物线
恒有两个不同的交点
设:,则
又,
分别带入,解得
直线的方程为
,即
或
知识点
如图,设椭圆C:动直线
与椭圆C只有一个公共点P,且点P在第一象限.
(1) 已知直线的斜率为
,用
表示点P的坐标;
(2) 若过原点的直线
与
垂直,证明:点
到直线
的距离的最大值为
.
正确答案
见解析
解析
(1)方法1:设直线l的方程为 ,由
,消去y得
由于直线l与椭圆C只有一个公共点P,故△=0,即,解得点P的坐标为
又点P在第一象限,故点P的坐标为
方法2:作变换 ,则椭圆C:
变为圆
:
切点 变为点
,切线
(
变为
。
在圆 中设直线
的方程为
(
) ,
由 解得
即 ,由于
,
所以 ,得
,
即 代入得
即
,
利用逆变换代入即得:
(2)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离
整理得:
因为,所以
当且仅当 时等号成立。
所以,点P到直线 的距离的最大值为
知识点
已知椭圆过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若
则k=( )
正确答案
解析
知识点
已知椭圆的四个顶点恰好是一边长为2,一内角为
的菱形的四个顶点。
(1)求椭圆的方程;
(2)直线与椭圆
交于
,
两点,且线段
的垂直平分线经过点
,求
(
为原点)面积的最大值。
正确答案
(1)
(2)
解析
(1)因为椭圆的四个顶点恰好是一边长为2,
一内角为 的菱形的四个顶点,
所以,椭圆
的方程为
…………………4分
(2)设因为
的垂直平分线通过点
, 显然直线
有斜率,
当直线的斜率为
时,则
的垂直平分线为
轴,则
所以
因为,
所以,当且仅当
时,
取得最大值为
………………6分
当直线的斜率不为
时,则设
的方程为
所以,代入得到
当, 即
方程有两个不同的解
又,
…………………9分
所以,又
,化简得到
代入,得到
…………………10分
又原点到直线的距离为
所以
化简得到 …………………12分
因为,所以当
时,即
时,
取得最大值
综上,面积的最大值为
…………………14分
知识点
已知椭圆的中心在原点,焦点在轴上,离心率为
,且经过点
.
直线交椭圆于
两不同的点.
(1)求椭圆的方程;
(2)若直线不过点
,求证:直线
与
轴围成等腰三角形.
正确答案
见解析。
解析
知识点
已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(1)求椭圆的方程;
(2)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围。
正确答案
(1)
(2)
解析
(1)依题意不妨设,
,则
,
.
由,得
.又因为
,
解得.
所以椭圆的方程为
. ……………4分
(2)依题直线的方程为
.
由得
.
设,
,则
,
. …………6分
所以弦的中点为
. ……………7分
所以
. ……………9分
直线的方程为
,
由,得
,则
,
所以. …………11分
所以.……………12分
又因为,所以
.
所以.
所以的取值范围是
. ……………………14分
知识点
已知中心在原点的双曲线的右焦点为
,离心率等于
,在双曲线
的方程是 ( )
正确答案
解析
B;依题意,
,所以
,从而
,
,故选B。
知识点
有一个半径为的圆,现在将一枚半径为
的硬币向圆投去,如果不考虑硬币完全落在圆外的情况,则硬币完全落入圆内的概率为 。
正确答案
解析
略
知识点
将函数的图象向右平移
个单位,再向上平移1个单位,所得函数图象对应的解析式为 ( )
正确答案
解析
略。
知识点
已知:椭圆(
),过点
,
的直线倾斜角为
,原点到该直线的距离为
。
(1)求椭圆的方程;
(2)斜率大于零的直线过与椭圆交于
,
两点,若
,求直线
的方程;
(3)是否存在实数,直线
交椭圆于
,
两点,以
为直径的圆过点
?若存在,求出
的值;若不存在,请说明理由。
正确答案
见解析
解析
(1)由,
,得
,
,
所以椭圆方程是:-----------------4分
(2)设EF:(
)代入
,得
,
设,
,由
,得
。
由,
--------------6分
得,
,
(舍去),(没舍去扣1分)
直线的方程为:
即
--------------------9分
(3)将代入
,得
(*)
记,
,PQ为直径的圆过
,则
,即
,又
,
,得
。
解得,此时(*)方程
,
存在
,满足题设条件。-----------------14分
知识点
扫码查看完整答案与解析