热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

11.平面a过正方体ABCD-A1B1C1D1的顶点Aa//平面CB1D1平面ABCD=m平面ABA1B1=n,则mn所成角的正弦值为(    )

A

B

C

D

正确答案

A

知识点

异面直线及其所成的角空间中直线与平面之间的位置关系直线与平面平行的判定与性质
1
题型: 单选题
|
单选题 · 5 分

6.已知直线ab分别在两个不同的平面αβ内.则“直线a和直线b相交”是“平面α和平面β相交”的

A充分不必要条件

B必要不充分条件

C充要条件

D既不充分也不必要条件

正确答案

A

知识点

充要条件的判定直线与平面平行的判定与性质直线与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

2.已知互相垂直的平面交于直线l,若直线m,n满足,则

A

B

C

D

正确答案

C

知识点

直线与平面平行的判定与性质
1
题型:填空题
|
填空题 · 4 分

6、如图,在正四棱柱中,底面的边长为3,与底面所成角的大小为,则该正四棱柱的高等于____________

正确答案

解析

知识点

直线与平面平行的判定与性质
1
题型:简答题
|
简答题 · 12 分

17.(本小题满分12分)

在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.

(I)已知G,H分别为ECFB的中点,求证:GH∥平面ABC

(II)已知EF=FB=AC=AB=BC.求二面角的余弦值.

正确答案

知识点

直线与平面平行的判定与性质二面角的平面角及求法
1
题型: 单选题
|
单选题 · 5 分

10. 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBCAB=6,BC=8,AA1=3,则V的最大值是

A

B

C

D

正确答案

B

知识点

直线与平面平行的判定与性质
1
题型: 单选题
|
单选题 · 5 分

17.对于平面和两条直线, 下列命题中真命题是(     )

A, , 则

B, , 则

C所成的角相等, 则

D, , 且在平面外, 则

正确答案

D

解析

, , 直线有可能在平面内,A是错误的;

, , 直线也有可能相交或者异面,B是错误的;

所成的角相等,直线也有可能相交或者异面,如圆锥的各条母线,C是错误的。

由直线与平面平行的判定定理,D是正确的。

考查方向

本题主要考查了空间直线与平面的位置关系和空间想象能力,在近几年的各省高考题出现的频率较高。

解题思路

本题考查了空间直线与平面的位置关系和空间想象能力,可以考虑用排除法解决,错误的举出反例即可。

易错点

本题必须注意考虑直线在平面内等特殊情况,注意对各类情况讨论解决,忽视则会出现错误。

知识点

充要条件的判定空间中直线与直线之间的位置关系直线与平面平行的判定与性质
1
题型:简答题
|
简答题 · 12 分

18. 如图,在四棱锥S—ABCD中,底面ABCD是直角梯形,侧棱SA丄底面ABCDAB垂直于AD 和 BCSA=AB = BC=2,AD = 1.M 是棱 SB 的中点.

(1)求证:AM//平面SCD,

(2)求平面SCD与平面SAB所成的二面角的余弦值

(3)设点N是直线CD上的动点MN与平面SAB所成的角为0,求sin的最大值.

正确答案

(2)

解析

试题分析:(Ⅰ)通过建立空间直角坐标系,利用平面SCD的法向量即可证明AM∥平面SCD;(Ⅱ)分别求出平面SCD与平面SAB的法向量,利用法向量的夹角即可得出;(Ⅲ)利用线面角的夹角公式即可得出表达式,进而利用二次函数的单调性即可得出.

(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,则

A(0,0,0),B(0,2,0),D(1,0,0,),S(0,0,2),M(0,1,1).

设平面SCD的法向量是

,即令z=1,则x=2,y=﹣1.

于是

,∴.又∵AM⊄平面SCD,∴AM∥平面SCD.

(Ⅱ)易知平面SAB的法向量为.设平面SCD与平面SAB所成的二面角为α,则==,即.∴平面SCD与平面SAB所成二面角的余弦值为

(Ⅲ)设N(x,2x﹣2,0),则

===

,即时,

考查方向

用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面所成的角;二面角的平面角及求法.菁优网版权所有

解题思路

建立空间直角坐标系利用平面SCD的法向量即可证明AM∥平面SCD、平面SCD与平面SAB的法向量的夹角求出二面角、线面角的夹角公式、二次函数的单调性是解题的关键.

易错点

1、利用定义求通项公式

2、第二问中错位相减法计算的准确性;

知识点

直线与平面平行的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 14 分

17.如图,在四棱锥中,底面是平行四边形,,侧面底面,, 分别为的中点,点在线段上。

(Ⅰ)求证:平面

(Ⅱ)若的中点,求证:平面

(Ⅲ)如果直线与平面所成的角和直线与平面所成的角相等,求的值。

正确答案

(Ⅰ)证明略;

(Ⅱ)证明略;

(Ⅲ)

解析

试题分析:本题属于立体几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意判定定理的条件要全

(Ⅰ)证明:在平行四边形中,因为

所以

分别为的中点,得

所以

因为侧面底面,且

所以底面

又因为底面

所以

又因为平面平面

所以平面

(Ⅱ)证明:因为的中点,分别为的中点,

所以

又因为平面平面

所以平面

同理,得平面

又因为平面平面

所以平面平面

又因为平面

所以平面

(Ⅲ):因为底面,所以两两垂直,故以

分别为轴、轴和轴,如下图建立空间直角坐标系,

所以

,则

所以

易得平面的法向量

设平面的法向量为

, 得

因为直线与平面所成的角和此直线与平面所成的角相等,

所以,即

所以

解得,或(舍).

考查方向

本题主要考查了空间中直线与平面的位置关系的转化、空间向量在立体几何中的运用;空间中线面位置关系的证明值域有以下几类:

1.线线间的平行或垂直,

2.面面间的平行或垂直,

3.线面间的平行或垂直;

空间向量在立体几何中的运用,主要分以下几类:

1.利用空间向量求异面直线的角,

2.利用空间向量求直线与平面所成的角,

3.利用空间向量求二面角,

4.利用空间向量求点到平面的距离.

解题思路

本题考查立体几何问题,解题步骤如下:

1.利用线面垂直的判定定理进行证明;

2.利用三角形的中位线得到线线平行,利用线面平行的判定定理得到线面平行;

3.利用面面平行的判定定理进行证明;

4.建立空间直角坐标系,利用三点共线设点,求出平面的法向量;5.利用两角相等求得比值。

易错点

1、第一、二问中,利用判定定理证明时,条件不全; 

2、第三问中写点的坐标出现错误。

知识点

直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型:简答题
|
简答题 · 14 分

17.如图,在四棱锥中,底面是平行四边形,,侧面底面,, 分别为的中点,点在线段上.

(Ⅰ)求证:平面; 

(Ⅱ)若的中点,求证:平面

(Ⅲ)当时,求四棱锥的体积.

正确答案

(Ⅲ)四棱锥的体积为24.

解析

(Ⅰ)证明:在平行四边形中,因为

所以.

分别为的中点,得

所以.

因为侧面底面,且

所以底面.

又因为底面

所以.

又因为平面平面

所以平面.

(Ⅱ)证明:因为的中点,分别为的中点,

所以

又因为平面平面

      所以平面.

同理,得平面.

又因为平面平面

所以平面平面.

又因为平面

所以平面.

(Ⅲ)解:在中,过于点(图略),

,得

又因为

所以

因为底面

所以底面

所以四棱锥的体积.

考查方向

本题以四棱锥为背景,依托面面垂直性质定理及等腰三角形的性质等重点考查线面垂直、线面平行的判定(面面平行的性质)以及空间几何体体积的求法。本题的设计吻合高考命题的方向,通过以上重要知识点的组合设计突出考查学生的空间想象能力和逻辑思维能力。

解题思路

1、第一问由(通过为底角为45度的等腰三角形得出)即可证平面

2、第二问可通过证明平面MEF平行平面PAB得出平面;也可以通过取PA中点N,连结MN,BN构造平行四边形MNBE得出NB由线面平行判定得出平面

3、由PA垂直平面ABCD为基础,通过作PA平行线得出四棱锥的高即可顺利解决问题,于是过于点即得到四棱锥的高,然后通过,三角形MND与三角形PAD相似可得MN的值,进而求出四棱锥的体积.

易错点

本题前两问中的证明过程要求严谨、完整,部分学生易书写的不规范、不完整而出错。

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
下一知识点 : 直线、平面垂直的判定与性质
百度题库 > 高考 > 理科数学 > 直线、平面平行的判定与性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题