- 直线、平面平行的判定与性质
- 共628题
11.平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,
平面ABA1B1=n,则m、n所成角的正弦值为( )
正确答案
知识点
6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的
正确答案
知识点
2.已知互相垂直的平面交于直线l,若直线m,n满足
,则
正确答案
知识点
6、如图,在正四棱柱中,底面
的边长为3,
与底面所成角的大小为
,则该正四棱柱的高等于____________
正确答案
解析
知识点
17.(本小题满分12分)
在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.
(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;
(II)已知EF=FB=AC=
AB=BC.求二面角
的余弦值.
正确答案
知识点
10. 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是
正确答案
知识点
17.对于平面和两条直线
, 下列命题中真命题是( )
正确答案
解析
若,
, 直线
有可能在平面
内,A是错误的;
若,
, 直线
也有可能相交或者异面,B是错误的;
若与
所成的角相等,直线
也有可能相交或者异面,如圆锥的各条母线,C是错误的。
由直线与平面平行的判定定理,D是正确的。
考查方向
解题思路
本题考查了空间直线与平面的位置关系和空间想象能力,可以考虑用排除法解决,错误的举出反例即可。
易错点
本题必须注意考虑直线在平面内等特殊情况,注意对各类情况讨论解决,忽视则会出现错误。
知识点
18. 如图,在四棱锥S—ABCD中,底面ABCD是直角梯形,侧棱SA丄底面ABCD,AB垂直于AD 和 BC,SA=AB = BC=2,AD = 1.M 是棱 SB 的中点.
(1)求证:AM//平面SCD,
(2)求平面SCD与平面SAB所成的二面角的余弦值,
(3)设点N是直线CD上的动点,MN与平面SAB所成的角为0,求sin的最大值.
正确答案
(2)
解析
试题分析:(Ⅰ)通过建立空间直角坐标系,利用平面SCD的法向量即可证明AM∥平面SCD;(Ⅱ)分别求出平面SCD与平面SAB的法向量,利用法向量的夹角即可得出;(Ⅲ)利用线面角的夹角公式即可得出表达式,进而利用二次函数的单调性即可得出.
(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,则
A(0,0,0),B(0,2,0),D(1,0,0,),S(0,0,2),M(0,1,1).
则,
,
.
设平面SCD的法向量是,
则,即
令z=1,则x=2,y=﹣1.
于是.
∵,∴
.又∵AM⊄平面SCD,∴AM∥平面SCD.
(Ⅱ)易知平面SAB的法向量为.设平面SCD与平面SAB所成的二面角为α,则
=
=
,即
.∴平面SCD与平面SAB所成二面角的余弦值为
.
(Ⅲ)设N(x,2x﹣2,0),则.
∴=
=
=
.
当,即
时,
.
考查方向
用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面所成的角;二面角的平面角及求法.菁优网版权所有
解题思路
建立空间直角坐标系利用平面SCD的法向量即可证明AM∥平面SCD、平面SCD与平面SAB的法向量的夹角求出二面角、线面角的夹角公式、二次函数的单调性是解题的关键.
易错点
1、利用定义求通项公式
2、第二问中错位相减法计算的准确性;
知识点
17.如图,在四棱锥中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上。
(Ⅰ)求证:平面
;
(Ⅱ)若为
的中点,求证:
平面
;
(Ⅲ)如果直线与平面
所成的角和直线
与平面
所成的角相等,求
的值。
正确答案
(Ⅰ)证明略;
(Ⅱ)证明略;
(Ⅲ).
解析
试题分析:本题属于立体几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意判定定理的条件要全
(Ⅰ)证明:在平行四边形中,因为
,
,
所以.
由分别为
的中点,得
,
所以.
因为侧面底面
,且
,
所以底面
.
又因为底面
,
所以.
又因为,
平面
,
平面
,
所以平面
.
(Ⅱ)证明:因为为
的中点,
分别为
的中点,
所以,
又因为平面
,
平面
,
所以平面
.
同理,得平面
.
又因为,
平面
,
平面
,
所以平面平面
.
又因为平面
,
所以平面
.
(Ⅲ)解:因为底面
,
,所以
两两垂直,故以
分别为轴、
轴和
轴,如下图建立空间直角坐标系,
则,
所以,
,
,
设,则
,
所以,
,
易得平面的法向量
.
设平面的法向量为
,
由,
,得
令, 得
.
因为直线与平面
所成的角和此直线与平面
所成的角相等,
所以,即
,
所以 ,
解得,或
(舍).
考查方向
本题主要考查了空间中直线与平面的位置关系的转化、空间向量在立体几何中的运用;空间中线面位置关系的证明值域有以下几类:
1.线线间的平行或垂直,
2.面面间的平行或垂直,
3.线面间的平行或垂直;
空间向量在立体几何中的运用,主要分以下几类:
1.利用空间向量求异面直线的角,
2.利用空间向量求直线与平面所成的角,
3.利用空间向量求二面角,
4.利用空间向量求点到平面的距离.
解题思路
本题考查立体几何问题,解题步骤如下:
1.利用线面垂直的判定定理进行证明;
2.利用三角形的中位线得到线线平行,利用线面平行的判定定理得到线面平行;
3.利用面面平行的判定定理进行证明;
4.建立空间直角坐标系,利用三点共线设点,求出平面的法向量;5.利用两角相等求得比值。
易错点
1、第一、二问中,利用判定定理证明时,条件不全;
2、第三问中写点的坐标出现错误。
知识点
17.如图,在四棱锥中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上.
(Ⅰ)求证:平面
;
(Ⅱ)若为
的中点,求证:
平面
;
(Ⅲ)当时,求四棱锥
的体积.
正确答案
(Ⅲ)四棱锥的体积为24.
解析
(Ⅰ)证明:在平行四边形中,因为
,
,
所以.
由分别为
的中点,得
,
所以.
因为侧面底面
,且
,
所以底面
.
又因为底面
,
所以.
又因为,
平面
,
平面
,
所以平面
.
(Ⅱ)证明:因为为
的中点,
分别为
的中点,
所以,
又因为平面
,
平面
,
所以
平面
.
同理,得平面
.
又因为,
平面
,
平面
,
所以平面平面
.
又因为平面
,
所以平面
.
(Ⅲ)解:在中,过
作
交
于点
(图略),
由,得
,
又因为,
所以,
因为底面
,
所以底面
,
所以四棱锥的体积
.
考查方向
解题思路
1、第一问由,
(通过
为底角为45度的等腰三角形得出)即可证
平面
;
2、第二问可通过证明平面MEF平行平面PAB得出平面
;也可以通过取PA中点N,连结MN,BN构造平行四边形MNBE得出
NB由线面平行判定得出
平面
。
3、由PA垂直平面ABCD为基础,通过作PA平行线得出四棱锥的高即可顺利解决问题,于是过
作
交
于点
即得到四棱锥的高,然后通过
,三角形MND与三角形PAD相似可得MN的值,进而求出四棱锥
的体积.
易错点
本题前两问中的证明过程要求严谨、完整,部分学生易书写的不规范、不完整而出错。
知识点
扫码查看完整答案与解析