- 正弦定理
- 共176题
已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则的值为
正确答案
知识点
在△ABC中,角A,B,C所对的边分别是a,b,c,且.
19.证明:;
20.若,求
.
正确答案
(Ⅰ)根据正弦定理,可设=
=
=k(k>0).
则a=ksin A,b=ksin B,c=ksin C.
代入+
=
中,有
+
=
,变形可得
sin Asin B=sin Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sin C,
所以sin Asin B=sin C.
解析
(I)证明:由正弦定理可知原式可以化解为
∵和
为三角形内角 , ∴
则,两边同时乘以
,可得
由和角公式可知,
原式得证。
考查方向
解题思路
本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.
易错点
本题考查正弦定理、余弦定理、商数关系等基础知识,在用化边为角的技巧应用中有时会发生错误。
正确答案
(Ⅱ)4.
解析
(II)由题,根据余弦定理可知,
∵为为三角形内角,
,
则,即
由(I)可知
,∴
∴
考查方向
解题思路
本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.
易错点
本题考查正弦定理、余弦定理、商数关系等基础知识,在用化边为角的技巧应用中有时会发生错误。
13.在 中,内角
所对的边分别为
,已知
的面积为
,
则
的值为 .
正确答案
8
解析
因为,所以
,
又,解方程组
得
,由余弦定理得
,所以
.
考查方向
解题思路
根据1.同角三角函数关系;2.三角形面积公式;3.余弦定理.结合已知条件构造方程组解出即可。
易错点
定理不熟悉。
知识点
12.若锐角的面积为
,且
,则
等于________.
正确答案
解析
由已知得的面积为
,所以
,
,所以
.由余弦定理得
,
.
考查方向
解题思路
利用三角形的面积公式求出A,再利用余弦定理求出BC.
易错点
计算能力弱,不会用余弦定理求三角形的面积
知识点
16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 .
正确答案
(,
).
解析
如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在△BCE中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得,即
,解得
=
,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,
,即
,解得BF=
,所以AB的取值范围为(
,
).
考查方向
解题思路
本题可对边进行延长,由正弦定理求出BE然后求出BF,即可得到AB的范围。
易错点
本题在综合应用正余弦定理时易错。
知识点
设△ABC的内角A,B,C的对边分别为,
.
18.证明:;
19.若 ,且B为钝角,求A,B,C.
正确答案
由及正弦定理得
,所以
。
解析
见答案
考查方向
解题思路
由题及正弦定理得可得
。
易错点
不会想到切割化弦;
正确答案
,
,
.
解析
因为,所以,
由(1)知,因此
,又B为钝角,所以
,
故,由
知
,从而
,
综上所述,,
,
.
考查方向
解题思路
由两角和与差的公式化简得,结合(1)得
,又B为钝角,所以求出角
,进而可以求出角A,C。
易错点
做第(2)问时联系不上第(1)问的结论。
15. 在中,
,
(1)求的值;
(2)若点D在边上,
,求
的长。
正确答案
见解析
解析
解:如图, 设的内角
所对边的长分别是
,由余弦定理得
, 所以
.
又由正弦定理得.
由题设知,所以
.
在中,由正弦定理得
.
考查方向
解题思路
(1)用余弦定理求a
(2)由正弦定理求sinB
(3)在,由正弦定理求AD
易错点
忽略数形结合思想在本题中的作用。
知识点
13. 在ABC中,角A,B,C所对的边分别为a,b,c. 若
,
,
,则
____;
ABC的面积为____.
正确答案
解析
由=sinB得A=B,即a=b=3,从而由余弦定理
得
,从而得
,由面积公式
得:
ABC的面积为
.
考查方向
解题思路
由=sinB,进而得出A=B,即a=b=3,从而由余弦定理得出cosC的值,然后根据三角函数基本关系式得出sinC的值运用面积公式可求
ABC的面积。
易错点
考查知识点相对较多,基础不扎实,对个别公式掌握不熟练而出错。
知识点
7.在△ ABC中,a,b, c分别是角A,B,C所对边的边长,若cos A + sin A-
=0,则
的值是( )
正确答案
解析
得
∴
,∴
利用正弦定理知
考查方向
本题主要考查解三角形
解题思路
利用两角和与差的正弦、余弦函数公式化简,根据正弦、余弦函数求出cos(A+B)与sin(A+B)的值,进而求出A,B,C的度数,利用正弦定理化简所求的式子,计算即可得到结果
易错点
利用正余弦定理边角互化
知识点
在中,角A,B,C的对边分别为
若
,则角B的值为
正确答案
考查方向
易错点
1、本题在把题意转化成余弦定理模型上易出错。
知识点
扫码查看完整答案与解析