- 正弦定理
- 共176题
9.在中,设
分别为角
的对边,若
,
,则边
= ________.
正确答案
解析
在三角形中,利用三角形的内角和A+B+C= ,则可以求出SinC,然后利用正弦定理即可计算出
=7.
考查方向
解题思路
画出草图,标出已知信息,根据已知元素,合理准确地使用正、余弦定理求解。
易错点
根据已知额信息,不能如何准确地使用正、余弦定理求解。
知识点
16.已知向量,设
(I)求函数的解析式及单调增区间;
(II)在中,
分别为
内角A,B,C的对边,且
,求
的面积.
正确答案
(1)=
[
];
(2)
解析
试题分析:本题属于三角函数中的基本问题,题目的难度是逐渐由易到难,直接按照步骤来求
(Ⅰ)
=
由 可得
所以函数的单调递增区间为[],
(Ⅱ)
由可得
考查方向
解题思路
本题考查三角函数与解三角形,解题步骤如下:
1、利用向量的数量积求出并求出单调区间;
2、利用余弦定理求出,借助正弦定理求出面积
易错点
第一问中的辅助角容易计算错误
知识点
在△中,角
分别是边
的对角,且
.
17.若,求
的值;
18.若,求
的值.
正确答案
;
解析
试题分析:本题属于正余弦定理的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:
因为,由正弦定理有
.又
,所以
.
因为,所以
.从而
;
因此.
考查方向
解题思路
直接利用正弦定理及边角关系进行计算;
易错点
相关知识点不熟容易处错。
正确答案
.
解析
试题分析:本题属于正余弦定理的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:
设,
,则
.所以
.
考查方向
解题思路
设,
,则
,让背后直接利用余弦定理进行计算.
易错点
相关知识点不熟容易处错。
13.锐角三角形ABC中,分别是三内角A,B,C的对边,设
,则
的取值范围是________.
正确答案
解析
利用正弦定理得出
又∵
考查方向
解题思路
该题解题思路如下1、利用正弦定理得出2、使用倍角公式化简得到
3、根据题意三角形为锐角三角形,得出角A的范围
4、利用余弦函数的性质得出取值范围,
易错点
该题易于忽略了对A的范围的判断,该题属于中档题
知识点
已知的内角
的对边分别为
,且满足
.
17.求的值;
18.若,求
的面积.
正确答案
;
解析
∵,∴
,
∴,∴
,∴
,∴
,∴
.
考查方向
解题思路
第一问中用两角和差公式和三角恒等变换化简得到,再由正弦定理可得
;
易错点
第一问中想不到将角拆成
;
正确答案
.
解析
∵,
,∴
,∴
,∴
.
∴,即
的面积的
.
考查方向
解题思路
第二问中用倍余弦定理得到一个角,在用三角形面积公式求得面积。
易错点
第二问中用余弦定理求角时容易将特殊角记错。
在△ABC中,角A、B、C所对的边分别为a、b、c,且满足cos2C-cos2A=2sin(+C)·sin(
-C).
17.求角A的值;
18.若a=且b≥a,求2b-c的取值范围.
正确答案
见解析
解析
(1)由已知得,
化简得,
故
.
考查方向
解题思路
该题解题思路如下
1)利用倍角公式 对解析式降次
2)利用特殊角的三角函数求值得到角A,
3)使用正弦定理,进行边角之间的转换
4)根据角的取值范围得到答案
易错点
该题易于忽略了对A的范围的判断,该题属于中档题
正确答案
见解析
解析
解:
(2)由正弦定理,得
,
故=
因为,所以
,
,
所以.
考查方向
解题思路
该题解题思路如下
1)利用倍角公式 对解析式降次
2)利用特殊角的三角函数求值得到角A,
3)使用正弦定理,进行边角之间的转换
4)根据角的取值范围得到答案
易错点
该题易于忽略了对A的范围的判断,该题属于中档题
在中,角
的对边分别为
,满足
.
17.求;
18.若的面积为
,
,求
的角平分线
的长度.
正确答案
(1);
解析
试题分析:本题属于解三角形问题,属于基础题,主要考查两个定理的应用以及三角形的面积公式。具体解答步骤如下:
(Ⅰ)由正弦定理,,
可得,
所以,
所以,
因为, 所以
,故
;
考查方向
解题思路
本题考查解三解形,解题步骤如下:
1)利用正弦定理及三角恒等变换求出C。
2)通过面积公式及得出a,b有两组解。
3)根据a,b的两组解分别求的角平分线
的长度.
易错点
1、利用余弦定理增加运算量; 2、第二问解三角形时遗漏一组解。
正确答案
(2)的角平分线为
长为
解析
试题分析:本题属于解三角形问题,属于基础题,主要考查两个定理的应用以及三角形的面积公式。具体解答步骤如下:
(Ⅱ)解法一:由已知,
所以,又
,解得
,或
当时,由余弦定理可知
,
所以.
所以,
为直角三角形,
.
因为平分
,所以
在中,
.
当时,同理可得
所以的角平分线为
长为
(Ⅱ)解法二:在中,因为
平分
,所以
因为 ,所以
,
由已知,所以
,
又,
解得.
考查方向
解题思路
本题考查解三解形,解题步骤如下:
1)利用正弦定理及三角恒等变换求出C。
2)通过面积公式及得出a,b有两组解。
3)根据a,b的两组解分别求的角平分线
的长度.
易错点
1、利用余弦定理增加运算量; 2、第二问解三角形时遗漏一组解。
在△ABC中,已知a,b, c分别是角A,B,C的对边,且满足.
17.求角A的大小;
18.若a=2,求△ABC的周长的取值范围.
正确答案
(1);
解析
(1)由正弦定理,得,
∴,则
.
∵,∴
,∴
.
∵,∴
,∴
.源:Zxxk.Com]
考查方向
解题思路
(1)利用已知条件和正弦定理求出角A(2)利用(1)中和a=2及正弦定理表示出
,又
得到
即
。故
的周长
易错点
通过正弦定理表示三边即周长,易忽视角的范围出错。
正确答案
(2)
解析
(2)由正弦定理,得,
∴
=
=.
∵,∴
,∴
,∴
,
∴,故
的周长
.
考查方向
解题思路
(1)利用已知条件和正弦定理求出角A(2)利用(1)中和a=2及正弦定理表示出
,又
得到
即
。故
的周长
易错点
通过正弦定理表示三边即周长,易忽视角的范围出错。
5. 在中,
,
,
,则
_ _.
正确答案
解析
由正弦定理得,所以
,又
,所以
。
考查方向
解题思路
1.先利用正弦定理求出角C;2.利用大边对大角求出角C的准确值。
易错点
1.不知道应该用什么定理;2.不会根据大边对大角舍去一个角,导致结果出错。
知识点
6.在中,
,则
=( )
正确答案
解析
,可得,
,因为A、B都小于45度,所以C为钝角,所以
考查方向
解题思路
根据所给条件,求出其他同角三角函数值
易错点
计算错误,忽略取值正负
知识点
扫码查看完整答案与解析