热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

中,角的对边分别为,且

(1)求角的大小;

(2)若,求边的长和的面积。

正确答案

(1)

解析

(1)因为

所以,…………………………2分

因为,所以

所以,                           ………………………… 4分

因为,且,所以。…………………………6分

(2)因为

所以由余弦定理得,即

解得(舍),

所以边的长为,…………………………10分

。…………………………13分

知识点

正弦定理余弦定理
1
题型: 单选题
|
单选题 · 5 分

中,,则等于(   )。

A

B

C

D

正确答案

B,C,D

解析

知识点

正弦定理
1
题型:简答题
|
简答题 · 13 分

已知△ABC中,∠A, ∠B, ∠C的对边长分别为,且,.

(1)求c的值;

(2)求的取值范围。

正确答案

(1)

(2)

解析

知识点

正弦定理余弦定理利用基本不等式求最值
1
题型:简答题
|
简答题 · 12 分

已知锐角中内角A、B、C的对边分别为.

(1)求角C的值;

(2)设函数,且图象上相邻两最高点间的距离为,求的取值范围.

正确答案

见解析

解析

知识点

三角函数中的恒等变换应用正弦定理余弦定理
1
题型:简答题
|
简答题 · 12 分

已知锐角△ABC的面积等于,且AB=3,AC=4.

(1)求的值;

(2)求的值.

正确答案

见解析。

解析

(1)∵

.

又△ABC是锐角三角形,∴

.

(2)由余弦定理

由正弦定理得

又B为锐角,得.

知识点

运用诱导公式化简求值两角和与差的余弦函数正弦定理余弦定理
下一知识点 : 正弦定理的应用
百度题库 > 高考 > 理科数学 > 正弦定理

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题