- 圆的切线的性质定理的证明
- 共19题
13.如图,为圆的直径,为圆上一点,和过的切线互相垂直,垂足为,过的切线交过的切线于,交圆于,若,,则__________.
正确答案
3
解析
由题意可得,圆的半径为2,
设PT与AB交于点M,因为角BTC=120度,
所以角COB等于角BTM等于60度。
角BMT等于30度,
,,
所以可知,,
因为,
所以
所以,
由切割线定理可知
考查方向
解题思路
先求出MC的值,然后利用切割线定理求PQ和PB的乘积
易错点
相关性质混淆
知识点
22. 如图,在直角中,,为边上异于的一点,以为直径作,分别交于点.
(Ⅰ)证明:四点共圆;
(Ⅱ)若为中点,且,求的长.
正确答案
(Ⅰ)略
(Ⅱ)
解析
试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。
(Ⅰ)
连结,则,
因为为直径,所以,
因为,所以,
所以,
所以四点共圆.
(Ⅱ)由已知为的切线,所以,故,
所以,
因为为中点,所以.
因为四点共圆,所以,
所以
考查方向
解题思路
本题主要考查圆的基本性质、圆周角定理等基础知识。解题步骤如下:
(Ⅰ)利用四点共圆的判定定理,证明四点共圆;
(Ⅱ)利用切线性质和勾股定理及第一问的结论,求出的长。
易错点
第二问计算中,不易想到利用第一问四点共圆的性质解决。
知识点
22.已知四边形ABCD内接于⊙O,AD:BC=1:2,BA、CD的延长线交于点E,且EF切⊙O于F.
(Ⅰ)求证:EB=2ED;
(Ⅱ)若AB=2,CD=5,求EF的长.
正确答案
(Ⅰ)见解析
(Ⅱ)EF=2
解析
(Ⅰ)证明:∵四边形ABCD内接于⊙O,∴∠EAD=∠C,又∵∠DEA=∠BEC,∴△AED∽△CEB,
∴ED:EB=AD:BC=1:2,即EB=2ED;
(Ⅱ)∵EF切⊙O于F.∴EF2=ED•EC=EA•EB,设DE=x,则由AB=2,CD=5得:
x(x+5)=2x(2x﹣2),解得:x=3,∴EF2=24,即EF=2
考查方向
解题思路
本题考查了圆内接四边形的性质、圆的切割线定理及三角形的相似问题.
(Ⅰ)主要用三角形相似进行转化
(Ⅱ)要用切割线定理进行转化得结果。
易错点
圆的切割线定理及三角形的相似问题,相似时比例的转化易错。
知识点
7. 如图,切于点,交于两点,且与直径交于点, ,则= ( )
正确答案
解析
由题可知,CD•DT=AD•DB,解得圆的半径CT=2r=11,由PT2=PB•PA,解得PB=14.
A选项不正确,B选项不正确,C选项不正确,所以选D选项。
考查方向
解题思路
利用切割线定理求解即可.
易错点
本题易在利用切割线定理和割线定理时发生错误。
知识点
22. 如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于点D.
(1)证明:DB = DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆 的半径.
正确答案
(2)
解析
(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,
∴∠CBE=∠BCE,BE=CE.
又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.
∴△DBE≌△DCE,∴DC=DB.
(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,
∴BG=设DE的中点为O,连接BO,则∠BOG=60°.
从而∠ABE=∠BCE=∠CBE=30°.
∴CF⊥BF.
∴Rt△BCF的外接圆的半径=
考查方向
本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力了与圆有关的比例线段
解题思路
(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.
(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.
易错点
弦切角定理不会灵活应用
知识点
扫码查看完整答案与解析