- 圆锥曲线的定点、定值问题
- 共61题
20.已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆C:+=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为.
(1)求椭圆C的方程;
(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
22.设,
为坐标平面
上的点.直线
与抛物线
交于点
(异于点
).
(1)对任意,点
在抛物线
上,试问当
为何值时,点
在某一圆上?并求出该圆
的方程;
(2)若点在椭圆
上运动,试问
能否保持在一双曲线上?若能,求出该双曲线的方程.若不能,说明理由;
(3)对(1)中点所在的圆
,设
为圆
上两点,且满足
,试寻找一个定圆
,使得
恒与圆
相切.
正确答案
(1)直线,与抛物线
联立得
,依题意,
,当
时,
在圆
上;
(2)若点在椭圆
上运动,则
,
(方法1)两边同除以得,
,
∴点在双曲线
上;
(方法2) 设,则
代入上式,
得,
即,∴点
在双曲线
上;
(3)(方法1)设,则
,
由得
① 当直线的斜率为零时,
设的方程为
,于是
(舍负)
②当直线的斜率不为零时,
设的方程为
,代入圆的方程得
,于是
,
即原点到直线的距离
,与
无关,
∴直线总与圆
相切.
(方法2)设,原点到直线
的距离为
则,
即
注意到圆是
的外接圆,
∴,∴
即原点到直线的距离
为定值,
∴直线总与圆
相切.
解析
解析已在路上飞奔,马上就到!
知识点
5.过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2,线段P1P2的中点为P。设直线l的斜率为k1(k1≠0),直线OP(O为坐标原点)的斜率为k2,则k1k2等于( )
正确答案
解析
设P1(x1,y1),P2(x2,y2),P(x0,y0),则,两式作差得
,∴k1=
=-
=-
,又k2=
,∴k1k2=-
,故选C.
知识点
18. 平面直角坐标系中,已知椭圆
的离心率为
,左、右焦点分别是
,以
为圆心以3为半径的圆与以
为圆心以1为半径的圆相交,且交点在椭圆
上.
(1)求椭圆的方程;
(2)过椭圆上一动点
的直线
,过F2与x轴垂直的直线记为
,右准线记为
;
①设直线与直线
相交于点M,直线
与直线
相交于点N,证明
恒为定值,并求此定值。
②若连接并延长与直线
相交于点Q,椭圆
的右顶点A,设直线PA的斜率为
,直线QA的斜率为
,求
的取值范围.
正确答案
见解析
解析
(1)由题意知 ,则
,又
可得
,
所以椭圆C的标准方程为.
(2)①M N
②点(
),点Q
,
∵,
,
∴=
=
.
∵点P在椭圆C上, ∴,
∴=
=
.
∵,
∴.
∴的取值范围是
.
考查方向
解题思路
本题考查导数的性质,解题步骤如下:
(1)根据离心率和几何特点,求出椭圆方程
(2)表示M,N进而得
(3)表示,进而得
的取值范围.
易错点
点M,N表示不当
知识点
扫码查看完整答案与解析