- 圆锥曲线的定点、定值问题
- 共61题
20.已知抛物线:
,过焦点
的直线
交
于
两点.
(1)若线段的中点为
,求点
的轨迹方程;
(2) 若的面积为
(
为坐标原点),求证:
为定值,并求出此定值.
正确答案
(1);
(2)
解析
本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,
(1)由直线的参数表示出点,再化为直角坐标方程;
(2)根据弦长公式求出长和对应面积
。
(1)法一:
设,
,
得:
,
(1)当时,
,
,整理得:
(2)当时,
适合*式
综上:的轨迹方程为
(1)法二:
设,
,
,
,
的轨迹方程为
(2)
(定值)
考查方向
本题考查了求轨迹方程的方法、中点弦的处理方法、弦长公式及面积问题,常见求轨迹方程的方法有直译法、定义法、相关点法及参数法。圆锥曲线常见的问题有弦长、中点、面积、角度和“定”问题——定点、定线和定值。
易错点
1、求轨迹方程方法不熟练和点差法如何处理中点弦。
2、含参运算不正确导致出错。
知识点
22.如图,
曲线由两个椭圆
:
和椭圆
:
组成,
当成等比数列时,称曲线
为“猫眼曲线”.
(1)若猫眼曲线过点
,且
的公比为
,求猫眼曲线
的方程;
(2)对于题(1)中的求猫眼曲线,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为
,交椭圆
所得弦的中点为
,求证:
为与
无关的定值;
(3)若斜率为的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.
正确答案
(1),
;
(2)略;
(3).
解析
(1),
,
,
;
(2)设斜率为的直线交椭圆
于点
,
线段中点
由
,
得
存在且
,
,
且 ,
即
同理, 得证
(3)设直线的方程为
联立方程
,
化简得
,
联立方程,
化简得
,
两平行线间距离:
的面积最大值
注:若用第一小题结论,
算得:
的面积最大值为
考查方向
本题主要考查椭圆的标准方程与性质,考查椭圆与直线的位置关系,考查化简运算能力与对新定力的概念的即时学习能力.
解题思路
(1)根据定义求得猫眼曲线Γ的方程;
(2)设交点,由中点公式可得
,联立方程,化简可得
,同理可得
,两式相除消去
,即证
为与
无关的定值
;
(3)设直线的方程为
,联立方程,化简,从而可得
的方程,同理可得
的方程,再利用两平行线间距离表示三角形的高,再求|AB|,从而求得最大面积.
易错点
1.对新定义的“猫眼曲线”的概念的不理解,即时学习能力不够;
2.解析几何中繁琐的化简容易出错,特别是带字母的化简运算.
知识点
19.已知椭圆:
的离心率为
,点
在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设动直线与椭圆
有且仅有一个公共点,且
与圆
相交于不在坐标轴上的两点
,
,记直线
,
的斜率分别为
,
,求证:
为定值.
正确答案
(Ⅰ)椭圆的方程为
解析
(Ⅰ)解:由题意,得,
,
又因为点在椭圆
上,
所以,
解得,
,
,
所以椭圆C的方程为.
(Ⅱ)证明:当直线的斜率不存在时,由题意知
的方程为
,
易得直线,
的斜率之积
.
当直线的斜率存在时,设
的方程为
.
由方程组 得
,
因为直线与椭圆C有且只有一个公共点,
所以,即
.
由方程组 得
,
设,
,则
,
,
所以
,
将代入上式,
得.
综上,为定值
.
考查方向
解题思路
1、每一问通过椭圆离心率,点在椭圆上和
列出方程组即可求出
的值从而求出椭圆的方程。
2、第二问求证为定值,通过设
,
可知
,于是可考虑运用韦达定理把
表达出来求解,从而得出解题的思路:即当(1)斜率不存在时,求
;(2)斜率存在时,设
的方程分别与圆、椭圆联立方程组进而求解。
易错点
对于第二问不考虑斜率存在与否直接解答从而导致考虑不全面而失分。
知识点
20.椭圆与
的中心在原点,焦点分别在
轴与
轴上,它们有相同的离心率
,并且
的短轴为
的长轴,
与
的四个焦点构成的四边形面积是
.
(1)求椭圆与
的方程;
(2)设是椭圆
上非顶点的动点,
与椭圆
长轴两个顶点
,
的连线
,
分别与椭圆
交于点
,
.
①求证:直线,
斜率之积为常数;
②直线与直线
的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
正确答案
(1);
(2)直线,
斜率之积为常数
;
.
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,
(1)直接按照步骤来求
(2)要注意对参数的讨论.
解:(1)依题意,
设:
,
:
,
由对称性,四个焦点构成的四边形为菱形,
且面积,
解得:,
所以椭圆:
,
:
(2)①设,
则,
,
,
所以:,
直线,
斜率之积为常数
②设
,
则,
,
,
所以:,
同理:所以:
,由
,
,
结合(1)有
考查方向
本题考查了椭圆的标准方程和直线与椭圆的位置关系,属于高考中的高频考点.
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
1、利用e及对称性求a,b。
2、联立直线与椭圆方程求解。
易错点
第二问中表示直线斜率时容易出错。
知识点
正确答案
知识点
扫码查看完整答案与解析