热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

21.(本题满分14分)本题共2个小题,第1小题满分6分,第2小题满分8分

双曲线的左、右焦点分别为,直线且与双曲线交于两点

(1) 若的倾斜角为是等边三角形,求双曲线的渐近线方程

(2) 设,若的斜率存在,且,求的斜率

正确答案

(1)由已知,

,得

,

∴渐近线方程为

(2)若,则双曲线为

,

, ,则

, ,

 (*)

∴代入(*)式,可得

直线的斜率存在,故

设直线,代入

,且

∴直线的斜率为

知识点

双曲线的几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20.设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆ACD两点,过BAC的平行线交AD于点E.

(I)证明为定值,并写出点E的轨迹方程;

(II)设点E的轨迹为曲线C1,直线lC1M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

正确答案

知识点

圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 13 分

(本小题满分13分)

已知椭圆E的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.

(I)求椭圆E的方程及点T的坐标;

(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点AB,且与直线l交于点P.证明:存在常数λ,使得∣PT2=λ∣PA∣·∣PB∣,并求λ的值.

正确答案

(I)由已知,,则椭圆E的方程为.

有方程组 得.①

方程①的判别式为,由,得

此方程①的解为

所以椭圆E的方程为.

T坐标为(2,1).

(II)由已知可设直线 的方程为

有方程组 可得

所以P点坐标为( ),.

设点AB的坐标分别为 .

由方程组 可得.②

方程②的判别式为,由,解得.

由②得.

所以 ,

同理

所以

.

故存在常数,使得.

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

19.已知椭圆C:的离心率为,点在椭圆C上。

(Ⅰ)求椭圆C的方程;

(Ⅱ)设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与相交两点(两点均不在坐标轴上),且使得直线 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由。

正确答案

(Ⅰ)

(Ⅱ)

解析

试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意直线不存在斜率的特殊情况,(3)要注意计算结果去正确性

(Ⅰ)解:由题意,得

又因为点在椭圆上,

所以

解得

所以椭圆C的方程为

(Ⅱ)结论:存在符合条件的圆,且此圆的方程为

证明如下:

假设存在符合条件的圆,并设此圆的方程为

当直线的斜率存在时,设的方程为

由方程组  得

因为直线与椭圆有且仅有一个公共点,

所以,即

由方程组  得

,则

设直线 的斜率分别为

所以

代入上式,得

要使得为定值,则,即,验证符合题意.

所以当圆的方程为时,圆与的交点满足为定值

当直线的斜率不存在时,由题意知的方程为

此时,圆的交点也满足

综上,当圆的方程为时,圆与的交点满足斜率之积为定值

考查方向

本题主要考查了椭圆的标准方程、直线与椭圆的位置关系,直线与圆锥曲线的位置关系的考查主要分以下几类:

1.直线与圆锥曲线的公共点个数问题,

2.弦长问题,

3.中点弦问题.

解题思路

本题考查直线与椭圆的位置关系,解题步骤如下:

1.利用待定系数法求出椭圆的标准方程;

2.假设存在,设出圆的方程与直线方程;

3.联立直线与椭圆的方程,化简得到关于的一元二次方程,利用判别式为0求得的关系;

4.联立直线与圆的方程,化简得到关于的一元二次方程,利用平面向量的数量积求解;

5.讨论直线斜率不存在的情况,得到结论。

易错点

1、第二问中,联立直线与圆的方程得到关于关于的一元二次方程后,要注意验证判别式为正值;

2、第二问中,不要忘记“直线无斜率”的特殊情况。

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

22.如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线为“猫眼曲线”.

(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

(2) 对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3) 若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

正确答案

(1) 

(2)证法略;

(3)

解析

(1)

(2)设斜率为的直线交椭圆于点,线段中点

,得

存在且,且

 ,即

同理,

 得证

(3)设直线的方程为

两平行线间距离:

的面积最大值为

注:若用第一小题结论,算得:

的面积最大值为

考查方向

本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,在近几年的各省高考题出现的频率非常高,常与求函数值域等知识点交汇命题。

解题思路

本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,解题步骤如下:

(1)待定系数法求出椭圆方程;

(2)点差法推导直线的斜率的关系;

(3)利用设而不求,弦长公式求解三角形面积,

易错点

注意焦点位置的变化,区分几何意义的转变。

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题
下一知识点 : 圆锥曲线中的探索性问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的定点、定值问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题