- 圆锥曲线的定点、定值问题
- 共61题
已知椭圆








24. 设






25. 设



26. 设






正确答案
(1)略
解析
试题分析:(1)依题意,直线l1的方程
(1)直线

由点到直线的距离公式得点


因为
所以
考查方向
解题思路
直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.
易错点
准确计算化简
正确答案
((2)

解析
试题分析:(2)由(1)得:
(2)由


由(1)得
由题意知
解得

考查方向
解题思路
直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.
易错点
面积公式的恰当选取运用
正确答案
(3)
解析
试题分析:(3)设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组







得到
(3)设



由

同理
由(1)知,

整理得
由题意知

则

所以
考查方向
解题思路
直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.当直线(斜率为k)与圆锥曲线交于点A(x1,y1),B(x2,y2)时,则|AB|=


易错点
化简计算及方程恒成立问题
18.如图,在平面直角坐标系








(1)若圆



(2)若
①求证:
②求
正确答案
(1)圆

解析
试题分析:本题属于直线与圆锥曲线的综合问题,题目的难度较大,(1)直接求圆心和半径(2)证明定值问题时,要先表示出来,再通过计算化简得到(3)
(1)因为椭圆



从而圆

(2)①因为圆


即
同理,有
所以

从而
②设点

解得
同理,
所以




考查方向
解题思路
本题考查直线与圆锥曲线的位置关系,解决直线与椭圆的位置关系的相关问题时,常规思路是先把直线与椭圆联立方程组,消元、化简,然后应用根与系数的关系代入化简,从而解决相关问题。
易错点
1、第二问中证明
2、第三问中求
知识点
24.若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(2,2).
(1)求抛物线C的方程;
(2)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为
当

正确答案
见解析
解析
(1)
(2)
定点(6,-4)
考查方向
解题思路
1利用已知条件把求出抛物线方程2.设出直线方程证明其过定点。
易错点
本题必须注意审题,否则求解错误。
知识点
一种画椭圆的工具如图1所示.







26.求椭圆C的方程;
27.设动直线






正确答案
(Ⅰ)
解析
(Ⅰ)因为







考查方向
解题思路
(Ⅰ)由题意并结合三角形三边关系(两边之和大于第三边,两边之差小于第三边)知,





易错点
粗心算错。
正确答案
(Ⅱ)当直线


解析
(Ⅱ)(1)当直线




(2)当直线








又由







将①代入②得,











综合(1)(2)可知,当直线


考查方向
解题思路
(Ⅱ)首先讨论直线






























易错点
忘记讨论斜率不存在的情况。
20. 已知椭圆




(I)求椭圆C的标准方程;
(II)若直线

正确答案
(1)
(2)
解析
试题分析:本题考查了椭圆的标准方程,考查了直线和圆锥曲线的综合,考查了弦长公式的用法,训练了直线和圆锥曲线关系中的设而不求的解题方法,体现了整体运算思想,训练了学生的计算能力,该题是有一定难度问题.
(I) 解:由题意知
∴
即
∴

(II) 设
由于以
即
由




代入



把

考查方向
解题思路
(1)直接把给出的点的坐标代入椭圆方程,结合离心率及隐含条件a2=b2+c2联立方程组求解a2,b2的值,则椭圆方程可求;
(2)设出A,B的坐标,根据新定义得到P,Q的坐标,当斜率存在时设出直线方程y=kx+m,联立直线和椭圆方程后利用根与系数关系求得x1+x2,x1x2,再由以PQ为直径的圆过原点得到A,B的坐标之间的关系3x1x2+4y1y2=0,转化为横坐标的关系后代入x1+x2,x1x2,即可把直线的斜率用截距表示,然后利用弦长公式求出AB的长度,用点到直线的距离公式求出O点到AB的距离,利用整体运算就能求得三角形OAB的面积,斜率不存在时直线方程可直接设为x=m,和椭圆方程联立求出y2,同样代入3x1x2+4y1y2=0后可直接求出m的值,则三角形面积可求.
易错点
1、计算的准确性
2、存在性问题,先特殊在一般
知识点
扫码查看完整答案与解析























