- 圆锥曲线的定点、定值问题
- 共61题
在平面直角坐标系xOy中,点C在椭圆M:=1(a>b>0)上.若点A(-a,0),B(0,
),且
=
.
20.求椭圆M的离心率;
21.设椭圆M的焦距为4,P,Q是椭圆M上不同的两点,线段PQ的垂直平分线为直线l,且直线l不与y轴重合.
①若点P(-3,0),直线l过点(0,-),求直线l的方程;
②若直线l过点(0,-1) ,且与x轴的交点为D,求D点横坐标的取值范围.
正确答案
(1);
解析
解:(1)设C (x0,y0),则=(a,
),
=(x0,y0-
).
因为=
,所以(a,
)=
(x0,y0-
)=
,
得
代入椭圆方程得a2=.
因为a2-b2=c2,所以e=.
考查方向
解题思路
本题考查直线与椭圆位置关系,解题步骤如下:
(1)设C(m,n),由向量共线的坐标表示,可得C的坐标,代入椭圆方程,可得a,b的关系,
再由离心率公式计算即可得到所求值;
(2)①由题意可得c=2,a=3, b2=5,可得椭圆方程,设直线PQ的方程为y=k(x+3),代入椭圆方程,运用韦达定理和中点坐标公式,再由两直线垂直的条件:斜率之积为-1,解方程可得k,进而得到所求直线方程;
②设直线PQ的方程为y=kx+m,代入椭圆方程可得,运用韦达定理和中点坐标公式,再由两直线垂直的条件,求得4m=5+9k2,再由中点在椭圆内,可得k的范围,再由直线l的方程可得D的横坐标的范围.
易错点
第二问容易计算错误
正确答案
(2)①y=-x+或y=-
x+
②(-
,0)∪(0,
)
解析
解:(2)①因为c=2,所以a2=9,b2=5,所以椭圆的方程为=1,
设Q (x0,y0),则=1.……①
因为点P(-3,0),所以PQ中点为,
因为直线l过点(0,-),直线l不与y轴重合,所以x0≠3,
所以=-1,
化简得x02=9-y02-y0.……②
将②代入①化简得y02-y0=0,解得y0=0(舍),或y0=
.
将y0=代入①得x0=±
,所以Q为(±
,
),
所以PQ斜率为1或,直线l的斜率为-1或-
,
所以直线l的方程为y=-x+或y=-
x+
.
②设PQ:y=kx+m,则直线l的方程为:y=--1,所以xD=-k.
将直线PQ的方程代入椭圆的方程,消去y得(5+9k2)x2+18kmx+9m2-45=0.…………①,
设P(x1,y1),Q(x2,y2),中点为N,
xN==-
,代入直线PQ的方程得yN=
,
代入直线l的方程得9k2=4m-5. ……②
又因为△=(18km)2-4(5+9k2) (9m2-45)>0,
化得m2-9k2-5<0.
将②代入上式得m2-4m<0,解得0<m<4,
所以-<k<
,且k≠0,所以xD=-k∈(-
,0)∪(0,
).
综上所述,点D横坐标的取值范围为(-,0)∪(0,
).
考查方向
解题思路
本题考查直线与椭圆位置关系,解题步骤如下:
(1)设C(m,n),由向量共线的坐标表示,可得C的坐标,代入椭圆方程,可得a,b的关系,
再由离心率公式计算即可得到所求值;
(2)①由题意可得c=2,a=3, b2=5,可得椭圆方程,设直线PQ的方程为y=k(x+3),代入椭圆方程,运用韦达定理和中点坐标公式,再由两直线垂直的条件:斜率之积为-1,解方程可得k,进而得到所求直线方程;
②设直线PQ的方程为y=kx+m,代入椭圆方程可得,运用韦达定理和中点坐标公式,再由两直线垂直的条件,求得4m=5+9k2,再由中点在椭圆内,可得k的范围,再由直线l的方程可得D的横坐标的范围.
易错点
第二问容易计算错误
如图,椭圆E:的离心率是
,过点P(0,1)的动直线
与椭圆相交于A,B两点,当直线
平行与
轴
时,直线
被椭圆E截得的线段长为
.
25.求椭圆E的方程;
26.在平面直角坐标系中,是否存在与点P不同的定点Q,使得
恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
正确答案
;
解析
由已知,点在椭圆E上.
因此,
解得.
所以椭圆的方程为.
考查方向
解题思路
根据椭圆的对称性,当直线与
轴平行时,
,将这个点的坐标代入椭圆的方程,得
.再根据离心率得
,又
,三者联立,解方程组即可得
,进而得椭圆的方程为
.
易错点
不会转化题中给出的条件;
正确答案
存在,Q点的坐标为.
解析
当直线与
轴平行时,设直线
与椭圆相交于C
、D两点.
如果存在定点Q满足条件,则,即
.[来源:Z。xx。k.Com]
所以Q点在y轴上,可设Q点的坐标为.
当直线与
轴垂直时,设直线
与椭圆相交于M、N两点.
则,
由,有
,解得
或
.
所以,若存在不同于点P的定点Q满足条件,则Q点的坐标只可能为
.
下面证明:对任意的直线,均有
.
当直线的斜率不存在时,由上可知,结论成立.
当直线的斜率存在时,可设直线
的方程为
,A、B的坐标分别为
.
联立得
.
其判别式,
所以,.
因此.
易知,点B关于y轴对称的点的坐标为.
又,
所以,即
三点共线.
所以.
故存在与P不同的定点,使得
恒成立.
考查方向
解题思路
先利用与
轴平行和垂直这两种特殊情况找出点Q的坐标为
.接下来联立直线与椭圆的方程,利用根与系数的关系证明:对任意的直线
,均有
.设
,由图可看出
,为了证明
,只需证明
,为此作点B关于y轴对称的点
,这样将问题转化为证
三点共线.
易错点
想不到先解决特色情况再证明一般情况。
已知,抛物线
上一点
到抛物线焦点
的距离为
.
24.求和
的值;
25.如图5所示,过作抛物线
的两条弦
和
(点、
在第一象限),若
,求证:直线
经过一个定点.
正确答案
(1),
;
解析
(Ⅰ)由点到抛物线焦点
的距离为
,结合抛物线的定义得,
,即
,
抛物线的方程为,把点
的坐标代入,可解得
;
考查方向
解题思路
1.先利用抛物线定义求出p,然后将点M的坐标带入求解即可;2.设出直线、
的方程后分别与抛物线的方程联立消元导出韦达定理后将
表示为方程
,后利用韦达定理求解即可得到答案。
易错点
不会利用抛物线的定义转化题中的条件到抛物线焦点
的距离为
.不知道
该如何表示,或运算出错,导致运算越算越乱。
正确答案
(2)略
解析
(Ⅱ):显然直线、
的斜率都存在,
分别设、
的方程为
,
联立,得
,
联立,得
,
设,
,
,
,
则,
,同理,
,
故
,
注意到点、
在第一象限,
,∴
故得,
,∴
,即直线恒经过点
.
考查方向
解题思路
1.先利用抛物线定义求出p,然后将点M的坐标带入求解即可;2.设出直线、
的方程后分别与抛物线的方程联立消元导出韦达定理后将
表示为方程
,后利用韦达定理求解即可得到答案。
易错点
1.不会利用抛物线的定义转化题中的条件到抛物线焦点
的距离为
.2.不知道
该如何表示,或运算出错,导致运算越算越乱。
已知椭圆离心率为
,点
在短轴CD上,
且 .
23.求椭圆E的方程;
24.过点P的直线与椭圆E交于A,B两点.
(i)若,求直线
的方程;
(ii)在y轴上是否存在与点P不同的定点Q,使得恒成立,若存在,求出点Q的坐标,若不存在,请说明理由.
正确答案
考查方向
解题思路
由题意,根据数量积求得方程中的待定的a,b.(2).按照解析几何的常规思路求解,
先讨论直线方程的斜率问题,然后联系方程组,求方程的再向已经条件转化;
易错点
解析几何易出现对于直线方程的分类讨论上的错,再就是直线与曲线联系以后,寻求变量之间的联系时,易出现转化和计算,代数整理上的错误。
正确答案
解析
解:(1)当直线不存在斜率时,|PB|=, |AP|=
,
,不符合题意,
考查方向
解题思路
也是要讨论直线方程的斜率两种情况,假设存在,Q,使得恒成立,将数量关系转成坐标,进而转化成题中所设的直线方程的斜率K上,注意问题的充要性证明。
易错点
解析几何易出现对于直线方程的分类讨论上的错,再就是直线与曲线联系以后,寻求变量之间的联系时,易出现转化和计算,代数整理上的错误。
如图,已知椭圆:
的上顶点为
,离心率为
.
22.求椭圆的方程;
23. 若过点作圆
的两条切线分别与椭圆
相交于点
(不同于点
).当
变化时,试问直线
是否过某个定点?若是,求出该定点;若不是,请说明理由.
正确答案
解析
解: 由已知可得, ,
所求椭圆的方程为
考查方向
解题思路
列出a,b,c方程, 直接求椭圆的标准方程
易错点
解析几何易出现对于直线方程的分类讨论上的错误,其次就是直线与曲线联系以后,寻求变量之间的关系时,易出现转化、计算、代数整理的错误。
正确答案
直线过定点
.
解析
解:设切线方程为,则
,即
,
设两切线的斜率为
,则
是上述方程的两根,所以
;
由得:
,所以
,
同理可得:,
所以,于是直线
方程为
, 令
,得
,
故直线过定点
. ----------------------------15分
考查方向
解题思路
首先根据直线与圆相切得出,再根据直线和椭圆相交,联立方程组,求出B,D的坐标及BD的斜率, 写出BD的方程,得出BD过定点。
易错点
解析几何易出现对于直线方程的分类讨论上的错误,其次就是直线与曲线联系以后,寻求变量之间的关系时,易出现转化、计算、代数整理的错误。
扫码查看完整答案与解析